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▶ Alexis Joly
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▶ Joseph Salmon
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▶ Antoine Affouard



2Pl@ntNet online votes



3Users can make corrections
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5Crowdsourcing for classification
The good, the bad and the ugly

General.
▶ The good: Fast, easy, cheap data collection

▶ The bad: Noisy labels with different level skills

▶ The ugly: Very few theory, ad-hoc methods to handle noise from users
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5Crowdsourcing for classification
The good, the bad and the ugly

General.
▶ The good: Fast, easy, cheap data collection

▶ The bad: Noisy labels with different level skills

▶ The ugly: Very few theory, ad-hoc methods to handle noise from users

Pl@ntNet.
▶ 20+ million observations from around the world
▶ 6+ million users
▶ 22+ million votes
▶ 49 720 species



6Pl@ntNet general design

User  expertise from
label aggregation strategy



7Pl@ntNet label aggregation
EM based algorithm

Weighting users vote by their estimated number of identified species



8Active dataset
Any observation labeling is active

Initial setting
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8Active dataset
Any observation labeling is active

Invalidating label



9Choice of weight function

f (nu) = nα
u − nβ

u + γ with


α = 0.5
β = 0.2
γ = log(1.7) ≃ 0.74
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10Other existing strategies

▶ Majority Vote (MV)

▶ Worker agreement with aggregate (WAWA) (Appen 2021)
▶ Majority vote
▶ Weight user by how much they agree with the majority
▶ Weighted majority vote

▶ iNaturalist
▶ Need 2 votes
▶ 2/3 of agreements
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11Extracting a subset of a Pl@ntNet
Design and some numbers

▶ South Western European flora obs since 2017
▶ 823 000 users answered more than 11000 species
▶ 6 700 000 observations
▶ 9 000 000 votes casted
▶ Imbalance: 80% of observations are represented by 10% of total votes

No ground truth available to evaluate the strategies
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12Extracting a subset of a Pl@ntNet
Creation of test sets

▶ Extraction of 98 experts (TelaBotanic + prior knowledge – thanks to
Pierre Bonnet)



13Performance
Accuracy and volume of classes kept

In short
▶ Pl@ntNet aggregation performs better overall
▶ iNaturalist is highly impacted by their reject threshold
▶ In ambiguous settings (right), strategies weighting users are better
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14Performance
Precision, recall and validity

MV Pl@ntNet iNaturalist WAWA
Aggregation strategy
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In short
▶ Pl@ntNet aggregation performs better overall
▶ iNaturalist has good precision but bad recall
▶ We indeed remove some data but less than iNaturalist
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15Aggregating labels: with what tools?

Peerannot: Python library to handle crowdsourced data



Questions?



17Integrating the AI vote

Why?
▶ More data
▶ Could correct non expert users
▶ Could invalidate bad quality data

Dangers
▶ Redundancy: users are already guided by AI prediction
▶ Model collapse from training on its generated data
▶ If the network acts as a control agent, who controls the network?
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18Strategies to integrate AI vote

▶ AI as worker: naive integration

▶ AI fixed weight: weight= 1.7 to invalidate two new users, but < θconf

▶ AI invalidating: fixed weight but can only invalidate observations

▶ AI confident: fixed weight on data with P(predicted species) > θscore



19Pl@ntNet computer vision model

DinoV2 (Oqab et. al 2024) trained monthly (transformers based)



20Performance comparison
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In short
▶ AI should not be considered as any other user
▶ More stable results: confident AI with θscore = 0.7
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21Note on calibration
Over or underconfidence?

If we use probability outputs: can they be considered as probabilities?
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22Conclusion

Aggregation strategy

▶ Pl@ntNet aggregation fits the large scale framework
▶ With a system to invalidate data and clean the training set
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Aggregation strategy

▶ Pl@ntNet aggregation fits the large scale framework
▶ With a system to invalidate data and clean the training set

AI vote
▶ Confident AI seems the best performing
▶ We should calibrate the network before deployment



23This is the end

Thank you!


