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1On making a dataset
The issue with many tasks

Supervised setting: loss L, nt tasks pxi, yiq and predictors family H

arg min
fPH

nt
ÿ

i“1
Lpf pxiq, yiq

Size of nt? The bigger the better.. .
§ CIFAR-10(1): 60K
§ MNIST(2): 70K
§ Pl@ ntNet300K (3):`300K
§ ImageNet(4):`14.000K

Each of these needs a label!

(1) A. Krizhevsky (2009). Learning multiple layers of features from tiny images. Tech. rep.
(2) L. Deng (2012). “The mnist database of handwritten digit images for machine learning research”. In: IEEE Signal Processing Magazine 29.6, pp. 141–142.
(3) C. Garcin et al. (2021). “Pl@ ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution”. In: NeurIPS 2021-35th

Conference on Neural Information Processing Systems.
(4) J. Deng et al. (2009). “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE conference on computer vision and pattern recognition. Ieee,

pp. 248–255.
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Each of these needs a label!ùñPut humans back in the loop
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2Crowdsourcing labels

§ Participative labelling (CIFAR-10, eyewire(5) , Pl@ntNet,. . . )

(5)https://eyewire.org/explore

https://eyewire.org/explore


3Problems

§ Label noise
§ Multiple non-experts workers: who do we trust?
§ How do we aggregate the labels?

§ Data access
§ Only a few such datasets are available freely (CIFAR-10H (6)):

Need a crowdsourced data simulator
§ Ethics

§ invisible and underpaid workers, blurry rights with the law
(Amazon Mechanical Turk (7)),

§ Weigh people answers with very little information on them.

(6) J. Peterson, R. Battleday, and T. G. O. Russakovsky (2019). “Human Uncertainty Makes Classification More Robust”. In: ICCV, pp. 9617–9626.
(7)https://www.mturk.com/

https://www.mturk.com/
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4What do we need to simulate?

§ Images belonging to classes
(e.g. colors)

§ Workers with different abilities

(8) Y. Qin et al. (2019). “A Multi-class Classification Algorithm Based on Hypercube”. In: 2019 IEEE DDCLS, pp. 406–409.
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4What do we need to simulate?

§ Images belonging to classes
(e.g. colors)

§ Workers with different abilities
§ Consider that the difficulty also

comes from the task!

Simulator: Tasks as simple visual experiments
§ Simple tasks: RGB images
§ Labels Y “ t0, 1u3 (vertices of unit hypercube(8))
§ Each vertex has 3 neighbors e.g. Np1,0,0q “ tp1, 1,0q, p0,0,0q, p1,0, 1q)

(8) Y. Qin et al. (2019). “A Multi-class Classification Algorithm Based on Hypercube”. In: 2019 IEEE DDCLS, pp. 406–409.



5Visual experiments’ simulator
Simulating tasks

Simulation process
§ Start with image of color y and difficulty d
§ Sample a distribution over neighbors: ν¨|y „ Dirichletp1{3, 1{3, 1{3q
§ Switch each pixel with probability d and color

arg max
y1PNy

Dirichletpν¨|yq



6Simulating worker responses

Ask them 2 questions
§ Is y the true label?
§ If not: which color from Ny is it?

§ Confusion in r0, 1s: use Beta distributions (flexible and parametrized)
with mean d (step 1) or p1´ dqν¨|y (step 2)

§ Capability as variance levels: σpjq
yØy1
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7Examples of generated tasks

§ 25 workers
§ including 6 spammers (answer any label uniformly)
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8Identifying spammers

§ We want to remove spammers without removing lower-able workers

Raykar spam score(9)

Let ûj “ arg min }πpjq ´ 1JK uj}
2
F with 1JK uj “ 1 and 1K “ p1, . . . , 1qJ P RK :

spjq “ }πpjq ´ 1K ûJj }2
F “

1
KpK ´ 1q

ÿ

căc1

ÿ

kPrKs

´

π
pjq
ck ´ π

pjq
c1k

¯2

§ Use Dawid ans Skene model(10) to get workers’ confusion matrices ie
maximize the likelihood:

ź

iPrnts

ź

kPrKs

$

&

%

ρk
ź

jPrnws

ź

`PrKs

π
pjq
k`

,

.

-

1tyi“ku

(9) V. Raykar and S. Yu (2012). “Eliminating Spammers and Ranking Annotators for Crowdsourced Labeling Tasks”. In: J. Mach. Learn. Res. 13, pp. 491–518.
(10) A. Dawid and A. Skene (1979). “Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm”. In: J. R. Stat. Soc. Ser. C. Appl. Stat.

28.1, pp. 20–28.
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9Results simulations

Get spjq and then split spammers / non-spammers using k-means (k “ 2)
§ Simulated crowd: 100 workers with 88 spammers
§ Logistic regression with nt “ 500 and di P p0,0.6q, learning with

smooth labels
With spam Without spam

Accuracy 0.19 0.81



10Results CIFAR-10H

§ CIFAR-10H: out of 2571 workers, only 19 spammers
(very curated datasetùñ incentives given can temper results)



11What’s next?

§ Difficulty di in non-simulated tasks: how can we retrieve it?
(theoretically and in practiceùñ gain of time for experts)

§ Introduce the task difficulty in the aggregation process

§ Use Pl@ntNet data (K ", very imbalanced number of answers, very
imbalanced number of tasks per class)
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