IMPROVE LEARNING COMBINING CROWDSOURCED LABELS BY WEIGHTING AREAS UNDER THE MARGIN

Tanguy Lefort IMAG, Univ Montpellier, CNRS Inria, LIRMM, Univ Montpellier, CNRS

- Alexis Joly (Inria, LIRMM, Univ Montpellier CNRS)
- ▶ Joseph Salmon (CNRS, IMAG, Univ Montpellier, IUF)

Improve learning combining crowdsourced labels by weighting Areas Under the Margin https://arxiv.org/abs/2209.15380

PROBLEM: CAN WE TRUST OUR DATA

⁽¹⁾ A. Krizhevsky and G. Hinton (2009). "Learning multiple layers of features from tiny images". In.

^{(2) (}N.d.). https://github.com/googlecreativelab/quickdraw-dataset.

⁽³⁾ Y. LeCun et al. (1998). "Gradient-based learning applied to document recognition". In: Proceedings of the IEEE 86.11, pp. 2278–2324.

PROBLEM: CAN WE TRUST OUR DATA

Inside the dataset during training ...

⁽¹⁾ A. Krizhevsky and G. Hinton (2009). "Learning multiple layers of features from tiny images". In.

(2) (N.d.). https://github.com/googlecreativelab/quickdraw-dataset.

(3) Y. LeCun et al. (1998). "Gradient-based learning applied to document recognition". In: Proceedings of the IEEE 86.11, pp. 2278–2324.

TAKING A STEP BACK Data collection and data quality

- Classical dataset: $(x_1, y_1), \dots, (x_{n_{task}}, y_{n_{task}})$ pairs of tasks × labels $\in \mathcal{X} \times [K] = \{1, \dots, K\}$
- Where do the labels come from? Crowdsourcing

How can we identify too ambiguous tasks in a crowdsourcing setting?

TAKING A STEP BACK Data collection and data quality

3

- Classical dataset: $(x_1, y_1), \dots, (x_{n_{task}}, y_{n_{task}})$ pairs of tasks × labels $\in \mathcal{X} \times [K] = \{1, \dots, K\}$
- Where do the labels come from? Crowdsourcing

How can we identify too ambiguous tasks in a crowdsourcing setting?

Why not look at label distribution entropy? Not reliable (numbers of labels, biases, psychology mechanisms, spammers)

Simple strategy.

• Most of the time, a majority vote (naive and highly unreliable outside of asymptotic framework)

(4) R. Snow et al. (2008). "Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks". In: Conference on Empirical Methods in Natural Language Processing. EMNLP 2008. Association for Computational Linguistics, pp. 254–263.

Simple strategy.

• Most of the time, a majority vote (naive and highly unreliable outside of asymptotic framework)

Other common strategies.

- y_i is the first label that reaches a consensus of p people (often p = 5)⁽⁴⁾ \rightarrow arbitrary choice that is not theoretically supported
- y_i is the arg max of the aggregated soft labels (better, but not enough...)

⁽⁴⁾ R. Snow et al. (2008). "Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks". In: Conference on Empirical Methods in Natural Language Processing. EMNLP 2008. Association for Computational Linguistics, pp. 254–263.

A FIRST SOLUTION: CLASSIFY THE QUALITY **IMAGENET ODDITIES**

• curated set of probes⁽⁵⁾ in the training data (OOD=Out Of Distribution) e.g.: ImageNet⁽⁶⁾ +14 millions tasks, K = 1000 classes $(task_i, label_i, metadata_i) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{M}$

⁽a) Typical

- (b) Atypical
- (c) Corrupted

(d) Rand Label

(e) OOD

(f) Rand Input

⁽⁵⁾ S. A. Siddiqui et al. (2022). Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics.

⁽⁶⁾ O. Russakovsky et al. (2015). "ImageNet Large Scale Visual Recognition Challenge". In: International Journal of Computer Vision (IJCV) 115.3, pp. 211–252.

A FIRST SOLUTION: CLASSIFY THE QUALITY IMAGENET ODDITIES

• curated set of probes⁽⁵⁾ in the training data (OOD=Out Of Distribution) *e.g.*: ImageNet⁽⁶⁾ +14 millions tasks, K = 1000 classes $(task_i, label_i, metadata_i) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{M}$

- 1 metadata = 1 dynamic
- Identify the ambiguity

⁽⁵⁾ S. A. Siddiqui et al. (2022). Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics.

(6) O. Russakovsky et al. (2015). "ImageNet Large Scale Visual Recognition Challenge". In: International Journal of Computer Vision (IJCV) 115.3, pp. 211–252.

STRATEGIES (LESS?) COSTLY CLASSICAL SUPERVISED LEARNING

When was the last time you had a curated set of metadata up your sleeve?

⁽⁷⁾ G. Pleiss et al. (2020). "Identifying mislabeled data using the area under the margin ranking". In: NeurIPS.

⁽⁸⁾ C. Northcutt, L. Jiang, and I. Chuang (2021). "Confident learning: Estimating uncertainty in dataset labels". In: J. Artif. Intell. Res. 70, pp. 1373–1411.

⁽⁹⁾ J. Han, P. Luo, and X. Wang (2019). "Deep self-learning from noisy labels". In: ICCV, pp. 5138-5147.

⁽¹⁰⁾ K-H. Lee et al. (2018). "Cleannet: Transfer learning for scalable image classifier training with label noise". In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5447–5456.

6

When was the last time you had a curated set of metadata up your sleeve? **Never**

Assuming we have a hard label $(\in [K])$:

- Study the dynamics:
 - ► AUM⁽⁷⁾
- Confident learning⁽⁸⁾
- Self learning⁽⁹⁾
- Representative Sampling (CleanNet⁽¹⁰⁾)
- ...

⁽⁷⁾ G. Pleiss et al. (2020). "Identifying mislabeled data using the area under the margin ranking". In: NeurIPS.

⁽⁸⁾ C. Northcutt, L. Jiang, and I. Chuang (2021). "Confident learning: Estimating uncertainty in dataset labels". In: J. Artif. Intell. Res. 70, pp. 1373–1411.

⁽⁹⁾ J. Han, P. Luo, and X. Wang (2019). "Deep self-learning from noisy labels". In: ICCV, pp. 5138–5147.

⁽¹⁰⁾ K-H. Lee et al. (2018). "Cleannet: Transfer learning for scalable image classifier training with label noise". In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5447–5456.

Setting. $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times [K]$. Let \mathcal{C} an iterative classifier *s.t.* at epoch $t \leq T$ we have $\mathcal{C}^{(t)}(x_i) \in \mathbb{R}^K$ a vector of scores

AUM

$$\mathrm{AUM}(x_i, y_i) = \frac{1}{T} \sum_{t=1}^{T} \left[\mathcal{C}^{(t)}(x_i)_{y_i} - \max_{\ell \neq y_i} \mathcal{C}^{(t)}(x_i)_{\ell} \right] \in \mathbb{R}$$

⁽¹¹⁾ G. Pleiss et al. (2020). "Identifying mislabeled data using the area under the margin ranking". In: NeurIPS.

Setting. $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times [K]$. Let \mathcal{C} an iterative classifier *s.t.* at epoch $t \leq T$ we have $\mathcal{C}^{(t)}(x_i) \in \mathbb{R}^K$ a vector of scores

(11) G. Pleiss et al. (2020). "Identifying mislabeled data using the area under the margin ranking". In: NeurIPS.

DISSECTING THE AUM BUILDING TO THE CROWDSOURCED EXTENSION

8

DISSECTING THE AUM BUILDING TO THE CROWDSOURCED EXTENSION

Problem for crowdsourcing.

- We don't have a single y_i but multiple y_i^(j) (one for each worker w_j answering task x_i)
 - ▶ ... so $C^{(t)}(x_i)_{y_i}$ does not exist
 - ▶ ...and same issue with $\ell \neq y_i$.

- Multiple answers \Longrightarrow average each AUM.
- Let $\mathcal{A}(x_i) := \{j \in [n_{worker}] : worker j answered task i\}.$

- Multiple answers \Longrightarrow average each AUM.
- Let $\mathcal{A}(x_i) := \{j \in [n_{worker}] : worker j answered task i\}.$

Problem of reliability.

- The AUM of an expert shouldn't count as much as anyone's
 - ▶ ...so we need a weighting score for workers.

DISSECTING THE AUM BUILDING TO THE CROWDSOURCED EXTENSION

• Introduce weights $s^{(j)}(x_i)$ as the trust score in worker j for task x_i

• Denote
$$S = \sum_{j \in \mathcal{A}(x_i)} s^{(j)}(x_i)$$
,

⁽¹²⁾ C, Ju, A. Bibaut, and M. van der Laan (2018). "The relative performance of ensemble methods with deep convolutional neural networks for image classification". In: J. Appl. Stat. 45.15, pp. 2800–2818.

⁽¹³⁾ M. Lapin, M. Hein, and B. Schiele (2016). "Loss functions for top-k error: Analysis and insights". In: CVPR, pp. 1468–1477; F. Yang and S. Koyejo (2020). "On the consistency of top-k surrogate losses". In: ICML, pp. 10727–10735.

DISSECTING THE AUM BUILDING TO THE CROWDSOURCED EXTENSION

• Introduce weights $s^{(j)}(x_i)$ as the trust score in worker j for task x_i

• Denote
$$S = \sum_{j \in \mathcal{A}(x_i)} s^{(j)}(x_i)$$
,

Modifying the margin

- Scale effects in the scores, need to use a quantity that can be controlled ⁽¹²⁾
- Use margin with better theoretical properties for top-k classification⁽¹³⁾

⁽¹²⁾ C. Ju, A. Bibaut, and M. van der Laan (2018). "The relative performance of ensemble methods with deep convolutional neural networks for image classification". In: J. Appl. Stat. 45.15, pp. 2800–2818.

⁽¹³⁾ M. Lapin, M. Hein, and B. Schiele (2016). "Loss functions for top-k error: Analysis and insights". In: CVPR, pp. 1468–1477; F. Yang and S. Koyejo (2020). "On the consistency of top-k surrogate losses". In: ICML, pp. 10727–10735.

- Denote $\operatorname{softmax}(x_i) = \operatorname{softmax}(\mathcal{C}(x_i)) \in \Delta_{K-1}$ (simplex of dim K-1)
- Softmax output ordered as $\operatorname{softmax}_{[1]}(x_i) \ge \cdots \ge \operatorname{softmax}_{[K]}(x_i) > 0$

Choosing $s^{(j)}(x_i)$:

- if $s^{(j)}(x_i) = 1$ all workers have the same weight
- if $s^{(j)}(x_i) = c_j$ the weights only depend on the worker

⁽¹⁴⁾ A. Dawid and A. Skene (1979). "Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm". In: J. R. Stat. Soc. Ser. C. Appl. Stat. 28.1, pp. 20–28.

Choosing $s^{(j)}(x_i)$:

- if $s^{(j)}(x_i) = 1$ all workers have the same weight
- if $s^{(j)}(x_i) = c_j$ the weights only depend on the worker
- ... there is already a literature on trusting workers !

Dawid and Skene⁽¹⁴⁾

Model each worker with a confusion matrix $\pi^{(j)}$. Each worker answers independently as:

$$y_i^{(j)} \mid y_i^{\star} = \ell \sim \mathcal{M}$$
ultinomial $\left(\pi_{\ell \bullet}^{(j)}\right)$

The diagonal of $\pi^{(j)}$ represents worker ability to be correct.

⁽¹⁴⁾ A. Dawid and A. Skene (1979). "Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm". In: J. R. Stat. Soc. Ser. C. Appl. Stat. 28.1, pp. 20–28.

Likelihood.

$$\prod_{k\in[K]}\pi_{\ell k}^{(j)}$$

• 1 task, 1 worker and 1 answer conditioned on $y_i^{\star} = \ell$

Likelihood.

- 1 task, 1 worker and 1 answer conditioned on $y_i^{\star} = \ell$
- Multiple workers answer independently

Likelihood.

$$\prod_{\ell \in [K]} \left[\mathbb{P}(y_i^{\star} = \ell) \prod_{j \in [n_{worker}]} \prod_{k \in [K]} \pi_{\ell k}^{(j)} \right]^{\mathbf{1}_{\{y_i^{\star} = \ell\}}}$$

- 1 task, 1 worker and 1 answer conditioned on $y_i^* = \ell$
- Multiple workers answer independently
- Remove conditioning assumption on y_i^* : $\mathbb{P}(y_i^* = \ell) = \rho_\ell$

DAWID AND SKENE LIKELIHOOD

Likelihood.

$$\prod_{i \in [n_{\text{task}}]} \prod_{\ell \in [K]} \left[\rho_{\ell} \prod_{j \in [n_{\text{worker}}]} \prod_{k \in [K]} \pi_{\ell k}^{(j)} \right]^{T_{i\ell}}$$

- 1 task, 1 worker and 1 answer conditioned on $y_i^* = \ell$
- Multiple workers answer independently
- Remove conditioning assumption on y_i^* : $\mathbb{P}(y_i^* = \ell) = \rho_\ell$
- Each task is independent: $T_{i\ell} = 1$ if task *i* has label ℓ and 0 otherwise

DAWID AND SKENE VANILLA ALGORITHM

DAWID AND SKENE VANILLA ALGORITHM

- 1 Initialization: $\forall i \in [n_{\mathsf{task}}], \forall \ell \in [K], \ \hat{T}_{i\ell} = \frac{1}{|\mathcal{A}(x_i)|} \sum_{j \in \mathcal{A}(x_i)} \mathbf{1}_{\{y_i^{(j)} = \ell\}}$
- 2 while Convergence not achieved do

- DS assumes the error comes only from workers
- ... Is there a model that takes into account task difficulty?

(15) J. Whitehill et al. (2009). "Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise". In: NeurIPS. vol. 22.

- DS assumes the error comes only from workers
- ... Is there a model that takes into account task difficulty?

GLAD

Model each worker with an ability $\alpha \in \mathbb{R}$ and each task with a difficulty score $\beta \in \mathbb{R}_+^{\star}$. Model workers answers as:

$$\mathbb{P}(y_i^{(j)} = y_i^{\star} | \alpha, \beta) = \frac{1}{1 + e^{-\alpha_j \beta_i}}$$

The trust score is a bilinear function in a worker term α_j and a task term β_i Assumption. Error is uniform on other labels (not true in practice!)

⁽¹⁵⁾ J. Whitehill et al. (2009). "Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise". In: NeurIPS. vol. 22.

- Use multidimensionality of DS confusion matrices
- Use a network as control agent⁽¹⁶⁾

$$s^{(j)}(x_i) = \langle \operatorname{diag} \hat{\pi}^{(j)} | \operatorname{softmax}^{(T)}(x_i) \rangle \in [0, 1]$$

⁽¹⁶⁾ M. Servajean et al. (2017). "Crowdsourcing thousands of specialized labels: A Bayesian active training approach". In: IEEE Trans. Multimed. 19.6, pp. 1376–1391.

- Estimate confusion matrices $\pi^{(j)}$

- Estimate confusion matrices $\pi^{(j)}$
- For each worker
 - Train a network on $\{(x_i, y_i^{(j)}); x_i \text{ is answered by } w_j\}$
 - ► Compute for the answered tasks:

$$\text{AUM}(\mathbf{x}_i, \mathbf{y}_i^{(j)}) = \frac{1}{T} \sum_{t=1}^{T} \left[\text{softmax}_{\mathbf{y}_i^{(j)}}^{(t)}(\mathbf{x}_i) - \text{softmax}_{[2]}^{(t)}(\mathbf{x}_i) \right]$$

• Compute trust scores $s^{(j)}(x_i)$

- Estimate confusion matrices $\pi^{(j)}$
- For each worker
 - ► Train a network on $\{(x_i, y_i^{(j)}); x_i \text{ is answered by } w_j\}$
 - ► Compute for the answered tasks:

$$\operatorname{AUM}(x_i, y_i^{(j)}) = \frac{1}{T} \sum_{t=1}^{T} \left[\operatorname{softmax}_{y_i^{(j)}}^{(t)}(x_i) - \operatorname{softmax}_{[2]}^{(t)}(x_i)\right]$$

► Compute trust scores s^(j)(x_i)

- For each task compute the $\rm WAUM$ as the weighted average of $\rm AUMs$

SIMULATION WITH CIRCLES BINARY SETTING

- Workers = simulated classifiers (answering 500 tasks)
- Normalized trust scores

SIMULATION WITH CIRCLES Three classes

- 3 classes with 250 tasks per class
- Normalized trust scores

- Compute (WAUM(x_i))_i
- Remove the data with WAUM below quantile q_{lpha}
- Estimate confusion matrices $\hat{\pi}^{(j)}$ on pruned training dataset

- Compute (WAUM(x_i))_i
- Remove the data with WAUM below quantile q_{α}
- Estimate confusion matrices $\hat{\pi}^{(j)}$ on pruned training dataset

• $\hat{y}_i = \left(\sum_{j \in \mathcal{A}(x_i)} \pi_{k,k}^{(j)} \mathbf{1}_{\{y_i^{(j)} = k\}}\right)_{k \in [K]}$ normalized \rightarrow our soft labels to learn

HOW CAN WE USE THE WAUM? Pruning to avoid learning of too ambiguous data

- Compute (WAUM(x_i))_i
- Remove the data with WAUM below quantile q_{α}
- Estimate confusion matrices $\hat{\pi}^{(j)}$ on pruned training dataset

•
$$\hat{y}_i = \left(\sum_{j \in \mathcal{A}(x_i)} \pi_{k,k}^{(j)} \mathbf{1}_{\{y_i^{(j)} = k\}}\right)_{k \in [K]}$$
 normalized \rightarrow our soft labels to learn

"3 answers per task is not enough!"

⁽¹⁷⁾ C. Carcin et al. (2021). "Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution". In: Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks.

⁽¹⁸⁾ F. Rodrigues and F. Pereira (2018). "Deep learning from crowds". In: Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1.

"3 answers per task is not enough!"

- Yes ! It is not
- ... but it happens \rightarrow Pl@ntNet⁽¹⁷⁾ (future work), LabelMe⁽¹⁸⁾
- LabelMe 1000 images (subset of LabelMe image segmentation project)
- Each image was labelled by 1, 2 or 3 workers

⁽¹⁷⁾ C. Carcin et al. (2021). "Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution". In: Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks.

⁽¹⁸⁾ F. Rodrigues and F. Pereira (2018). "Deep learning from crowds". In: Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1.

"3 answers per task is not enough!"

- Yes ! It is not
- ... but it happens \rightarrow PI@ntNet⁽¹⁷⁾ (future work), LabelMe⁽¹⁸⁾
- LabelMe 1000 images (subset of LabelMe image segmentation project)
- Each image was labelled by 1, 2 or 3 workers

LabelMe and task difficulty

- Entropy is not reliable **at all**
- GLAD can't estimate a task difficulty for tasks with 1 label

⁽¹⁷⁾ C. Carcin et al. (2021). "Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution". In: Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks.

⁽¹⁸⁾ F. Rodrigues and F. Pereira (2018). "Deep learning from crowds". In: Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1.

"CAN I USE THE WAUM IN MY FRAMEWORK?" Most probably yes

- Most frameworks are built on DS model
 - the WAUM only needs a network and $\hat{\pi}^{(j)}$

Take home message(s).

- Crowdsourcing is great
- ... but if we judge workers, do it on tasks they can actually answer.

CONCLUSION

Take home message(s).

- Crowdsourcing is great
- ... but if we judge workers, do it on tasks they can actually answer.
- Better data quality \Rightarrow better performance (not new, but still...)
- Label uncertainty contains important information to learn!

For future you.

"I swear that, if I make a crowdsourcing experiment, I will release both the tasks and labels"

CONCLUSION

Take home message(s).

- Crowdsourcing is great
- ... but if we judge workers, do it on tasks they can actually answer.
- Better data quality \Rightarrow better performance (not new, but still...)
- Label uncertainty contains important information to learn!

For future you.

"I swear that, if I make a crowdsourcing experiment, I will release both the tasks and labels"

Thank you!

REFERENCES I

- (N.d.). https://github.com/googlecreativelab/quickdrawdataset.
- Dawid, A. and A. Skene (1979). "Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm". In: J. R. Stat. Soc. Ser. C. Appl. Stat. 28.1, pp. 20–28.
- Garcin, C. et al. (2021). "Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution". In: Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks.
- Han, J., P. Luo, and X. Wang (2019). "Deep self-learning from noisy labels". In: ICCV, pp. 5138–5147.
- Ju, C., A. Bibaut, and M. van der Laan (2018). "The relative performance of ensemble methods with deep convolutional neural networks for image classification". In: J. Appl. Stat. 45.15, pp. 2800–2818.
- Krizhevsky, A. and G. Hinton (2009). "Learning multiple layers of features from tiny images". In.
 - Lapin, M., M. Hein, and B. Schiele (2016). "Loss functions for top-k error: Analysis and insights". In: *CVPR*, pp. 1468–1477.

References II

- LeCun, Y. et al. (1998). "Gradient-based learning applied to document recognition". In: *Proceedings of the IEEE* 86.11, pp. 2278–2324.
- Lee, K.-H. et al. (2018). "Cleannet: Transfer learning for scalable image classifier training with label noise". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5447–5456.
- Northcutt, C., L. Jiang, and I. Chuang (2021). "Confident learning: Estimating uncertainty in dataset labels". In: J. Artif. Intell. Res. 70, pp. 1373–1411.
- Pleiss, G. et al. (2020). "Identifying mislabeled data using the area under the margin ranking". In: *NeurIPS*.
- **Rodrigues, F. and F. Pereira (2018).** "Deep learning from crowds". In: Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1.
- Russakovsky, O. et al. (2015). "ImageNet Large Scale Visual Recognition Challenge". In: International Journal of Computer Vision (IJCV) 115.3, pp. 211–252.

References III

- Servajean, M. et al. (2017). "Crowdsourcing thousands of specialized labels: A Bayesian active training approach". In: *IEEE Trans. Multimed.* 19.6, pp. 1376–1391.
- Siddiqui, S. A. et al. (2022). Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics.
- Snow, R. et al. (2008). "Cheap and Fast But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks". In: *Conference on Empirical Methods in Natural Language Processing*. EMNLP 2008. Association for Computational Linguistics, pp. 254–263.
- Whitehill, J. et al. (2009). "Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise". In: *NeurIPS*. Vol. 22.
- Yang, F. and S. Koyejo (2020). "On the consistency of top-k surrogate losses". In: *ICML*, pp. 10727–10735.