LABEL AMBIGUITY IN CROWDSOURCING FOR CLASSIFICATION AND EXPERT FEEDBACK

Tanguy Lefort IMAG, Univ Montpellier, CNRS INRIA, LIRMM,

Supervised by Benjamin Charlier Alexis Joly and Joseph Salmon

HOW TO TRAIN YOUR CLASSIFIER DEEP LEARNING IMAGE CLASSIFICATION PIPELINE

HOW TO TRAIN YOUR CLASSIFIER DEEP LEARNING IMAGE CLASSIFICATION PIPELINE

HOW TO TRAIN YOUR CLASSIFIER DEEP LEARNING IMAGE CLASSIFICATION PIPELINE

▶ Workers sort a given task into one of the K classes

▶ $y_i^{(j)} \in [K] := \text{answer of worker } j \text{ to task } i$

 \blacktriangleright *n*_{worker} workers answer *n*_{task} tasks

FROM THE DATA TO THE CLASSIFIER THE PIPELINE

FROM THE DATA TO THE CLASSIFIER THE PIPELINE

⁽¹⁾ T. Lefort, B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.

(2) T. Lefort, B. Charlier, et al. (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.

(3) T. Lefort, A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: submitted to Methods in Ecology and Evolution.

Can we standardize crowdsourcing dataset's tools in python for reproducibility?

⁽¹⁾ T. Lefort, B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.

⁽²⁾ T. Lefort, B. Charlier, et al. (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.

⁽³⁾ T. Lefort, A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: submitted to Methods in Ecology and Evolution.

Can we standardize crowdsourcing dataset's tools in python for reproducibility?

▶ What can we do in a large-scale setting? Application to Pl@ntNet

⁽¹⁾ T. Lefort, B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.

⁽²⁾ T. Lefort, B. Charlier, et al. (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.

⁽³⁾ T. Lefort, A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: submitted to Methods in Ecology and Evolution.

- ► Creation of the **WAUM**⁽¹⁾: a metric to identify ambiguous images
- Can we standardize crowdsourcing dataset's tools in python for reproducibility?

▶ What can we do in a large-scale setting? Application to Pl@ntNet

⁽¹⁾ T. Lefort, B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.

⁽²⁾ T. Lefort, B. Charlier, et al. (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.

⁽³⁾ T. Lefort, A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: submitted to Methods in Ecology and Evolution.

- ► Creation of the **WAUM**⁽¹⁾: a metric to identify ambiguous images
- Can we standardize crowdsourcing dataset's tools in python for reproducibility?
 - ► Creation of **peerannot** library⁽²⁾:

https://peerannot.github.io

▶ What can we do in a large-scale setting? Application to Pl@ntNet

⁽¹⁾ T. Lefort, B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.

⁽²⁾ T. Lefort, B. Charlier, et al. (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.

⁽³⁾ T. Lefort, A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: submitted to Methods in Ecology and Evolution.

- ► Creation of the **WAUM**⁽¹⁾: a metric to identify ambiguous images
- Can we standardize crowdsourcing dataset's tools in python for reproducibility?
 - ► Creation of **peerannot** library⁽²⁾:

https://peerannot.github.io

- What can we do in a large-scale setting? Application to Pl@ntNet
 - Creation and evaluation of a new benchmark dataset⁽³⁾

⁽¹⁾ T. Lefort, B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.

⁽²⁾ T. Lefort, B. Charlier, et al. (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.

⁽³⁾ T. Lefort, A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: submitted to Methods in Ecology and Evolution.

EXISTING AGGREGATION STRATEGIES

CLASSICAL AGGREGATION STRATEGY (WEIGHTED) MAJORITY VOTES

$$\hat{y_i}^{\mathrm{WMV}} = \operatorname*{argmax}_{k \in [K]} \sum_{j \in \mathcal{A}(x_i)} \mathbf{\widehat{h}}_j \mathbbm{1}(y_i^{(j)} = k)$$

For example with balanced weights:

CLASSICAL AGGREGATION STRATEGY (WEIGHTED) MAJORITY VOTES

$$\hat{y_i}^{\mathrm{WMV}} = \operatorname*{argmax}_{k \in [K]} \sum_{j \in \mathcal{A}(x_i)} \mathbf{\widehat{h}}_j \mathbbm{1}(y_i^{(j)} = k)$$

For example with unbalanced weights:

Many existing weight choices:

► Inter worker agreement: WAWA⁽⁴⁾:

```
\operatorname{weight}(w_j) = \operatorname{Accuracy}(\{y_i^{(j)}\}_i, \{\hat{y}_i^{\mathrm{MV}}\}_i)
```

► Feature importance + game theory: Shapley-value weight⁽⁵⁾

► Matrix completion: MACE⁽⁶⁾...

Pros: "simple" weight can scale to large datasets and be easy to interpret **Cons:** Can not capture worker skills in detail

⁽⁴⁾ https://success.appen.com/hc/en-us/articles/202703205-Calculating-Worker-Agreement-with-Aggregate-Wawa

⁽⁵⁾ T. Lefort, B. Charlier, et al. (July 2024c). "Weighted majority vote using Shapley values in crowdsourcing". In: CAp 2024 - Conférence sur l'Apprentissage Automatique. Lille, France.

⁽⁶⁾ D. Hovy et al. (2013). "Learning whom to trust with MACE". In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1120–1130.

- ► Introduced in a medical context (aggregate multiple diagnosis)
- ► Represent worker *j* from their pairwise confusions matrix $\pi^{(j)} \in \mathbb{R}^{K \times K}$
- Probabilistic model on their answers: $y^{(j)}|y^* \sim \text{Multinomial}(\pi_{u^*}^{(j)})$

with $\pi_{k,\ell}^{(j)} = \mathbb{P}(\text{worker } j \text{ answers } \ell \text{ with unknown truth } k)$

Pros:

Finer modelisation

► Can use adversarial workers

Cons:

Memory issue: n_{worker} × K² parameters to estimate only the confusion matrices

⁽⁷⁾ A. Dawid and A. Skene (1979). "Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm". In: J. R. Stat. Soc. Ser. C. Appl. Stat. 28.1, pp. 20–28.

Probabilistic model \longrightarrow Likelihood (to maximize via the Expectation Maximization algorithm)

▶ Idea: put the DS confusion matrix in a neural network as a new layer

▶ Idea: CrowdLayer + global and local confusions

IDENTIFY AMBIGUOUS TASKS IN CROWDSOURCED DATASETS

WHEN IMAGES HAVE UNDERLYING AMBIGUITY

WHEN IMAGES HAVE UNDERLYING AMBIGUITY

Goal: identify issues in classical datasets $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times [K]$

► AUM⁽¹⁰⁾: monitor margin during training

⁽¹⁰⁾G. Pleiss et al. (2020). "Identifying mislabeled data using the area under the margin ranking". In: NeurIPS.

16

Goal: identify issues in classical datasets $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times [K]$

- ► AUM⁽¹¹⁾: monitor margin during training
- ▶ Classifier: at training epoch $t \in [T]$, $C^{(t)}(x_i) \in \mathbb{R}^K$ a vector of scores
- ► Scores ordered: $C(x_i)_{[1]} \ge \cdots \ge C(x_i)_{[K]}$

(11) G. Pleiss et al. (2020). "Identifying mislabeled data using the area under the margin ranking". In: NeurIPS.

Goal: identify issues in classical datasets $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times [K]$

- ► AUM⁽¹¹⁾: monitor margin during training
- ▶ Classifier: at training epoch $t \in [T]$, $C^{(t)}(x_i) \in \mathbb{R}^K$ a vector of scores
- ► Scores ordered: $C(x_i)_{[1]} \ge \cdots \ge C(x_i)_{[K]}$

Challenging for crowdsourcing:

• *y_i* unknown

⁽¹¹⁾ G. Pleiss et al. (2020). "Identifying mislabeled data using the area under the margin ranking". In: NeurIPS.

16

Goal: identify issues in classical datasets $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times [K]$

- ► AUM⁽¹¹⁾: monitor margin during training
- ▶ Classifier: at training epoch $t \in [T]$, $C^{(t)}(x_i) \in \mathbb{R}^K$ a vector of scores
- ► Scores ordered: $C(x_i)_{[1]} \ge \cdots \ge C(x_i)_{[K]}$

Challenging for crowdsourcing:

- y_i unknown
 - ... so $C^{(t)}(x_i)_{y_i}$ does not exist

⁽¹¹⁾ G. Pleiss et al. (2020). "Identifying mislabeled data using the area under the margin ranking". In: NeurIPS.

Naive Extension: identify issues in concatenated datasets $\{(x_i, y_i^{(j)})\}_{i,j}$ \blacktriangleright Plugin estimate of y_i using \hat{y}_i^{MV}

Issue:

- Lose all worker-related information
- Sensitive to poorly performing workers
18

Weighted Areas Under the Margins: identify issues in concatenated datasets $\{(x_i, y_i^{(j)})\}_{i,j}$

▶ Scale effects in the scores discarded, need normalization⁽¹²⁾

With:

•
$$\sigma(x_i) = \sigma(\mathcal{C}(x_i)) \in \Delta_{K-1}$$
 (simplex of dim $K-1$)

⁽¹²⁾ C. Ju, A. Bibaut, and M. van der Laan (2018). "The relative performance of ensemble methods with deep convolutional neural networks for image classification". In: J. Appl. Stat. 45.15, pp. 2800–2818.

19

Our chosen worker/task score:

• Consider a score (following Servajean et al. (2017) $^{(13)}$) of the form $^{(14)}\colon$ worker skill \times task difficulty

$$s^{(j)}(x_i) = \left\langle \operatorname{diag}(\hat{\pi}^{(j)}) \mid \sigma^{(T)}(x_i) \right\rangle \in [0, 1]$$
Worker j overall ability

⁽¹³⁾ M. Servajean et al. (2017). "Crowdsourcing thousands of specialized labels: A Bayesian active training approach". In: IEEE Transactions on Multimedia 19.6, pp. 1376–1391.

⁽¹⁴⁾ J. Whitehill et al. (2009). "Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise". In: NeurIPS. vol. 22.

• Estimate confusion matrices $\pi^{(j)} \in \mathbb{R}^{K \times K}$, for all $j \in [n_{worker}]$

- Estimate confusion matrices $\pi^{(j)} \in \mathbb{R}^{K \times K}$, for all $j \in [n_{worker}]$
- Train a network on all crowdsourced task/label pairs: $(x_i, y_i^{(j)})$

- Estimate confusion matrices $\pi^{(j)} \in \mathbb{R}^{K \times K}$, for all $j \in [n_{worker}]$
- Train a network on all crowdsourced task/label pairs: $(x_i, y_i^{(j)})$
- Compute all WAUM(x_i) during training

- Estimate confusion matrices $\pi^{(j)} \in \mathbb{R}^{K \times K}$, for all $j \in [n_{worker}]$
- Train a network on all crowdsourced task/label pairs: $(x_i, y_i^{(j)})$
- Compute all WAUM(x_i) during training

- Estimate confusion matrices $\pi^{(j)} \in \mathbb{R}^{K \times K}$, for all $j \in [n_{worker}]$
- Train a network on all crowdsourced task/label pairs: $(x_i, y_i^{(j)})$
- Compute all WAUM(x_i) during training

Usage (for learning):

- **Prune** x_i 's with WAUM (x_i) below quantile q_α (say $\alpha = 0.01$)
- Estimate confusion matrices $\hat{\pi}^{(j)}$ on pruned training dataset

- Estimate confusion matrices $\pi^{(j)} \in \mathbb{R}^{K \times K}$, for all $j \in [n_{worker}]$
- Train a network on all crowdsourced task/label pairs: $(x_i, y_i^{(j)})$
- Compute all WAUM(x_i) during training

Usage (for learning):

- **Prune** x_i 's with WAUM (x_i) below quantile q_α (say $\alpha = 0.01$)
- Estimate confusion matrices $\hat{\pi}^{(j)}$ on pruned training dataset
- Aggregate labels and train a classifier on the newly pruned dataset

Presenting CIFAR-10H⁽¹⁵⁾ dataset

Labels:cat,dog,car,plane,bird,horse,frog,deer,ship,truck

⁽¹⁵⁾ J. C. Peterson et al. (2019). "Human Uncertainty Makes Classification More Robust". In: ICCV, pp. 9617–9626.

Presenting CIFAR-10H⁽¹⁵⁾ dataset

Labels:cat,dog,car,plane,bird,horse,frog,deer,ship,truck

(15) J. C. Peterson et al. (2019). "Human Uncertainty Makes Classification More Robust". In: ICCV, pp. 9617–9626.

PRESENTING LABELME DATASET⁽¹⁶⁾

- ▶ 1000 training / 500 validation / 1188 test images
- ▶ 59 workers: each task has up to 3 votes
- ► 8 classes:

highway,insidecity,tallbuilding,street,forest,coast, mountain,opencountry

⁽¹⁶⁾ F. Rodrigues, F. Pereira, and B. Ribeiro (2014). "Gaussian process classification and active learning with multiple annotators". In: ICML. PMLR, pp. 433–441.

PRESENTING LABELME DATASET⁽¹⁶⁾

- 1000 training / 500 validation / 1188 test images
- ▶ 59 workers: each task has up to 3 votes
- ► 8 classes:

highway,insidecity,tallbuilding,street,forest,coast, mountain,opencountry

(16) F. Rodrigues, F. Pereira, and B. Ribeiro (2014). "Gaussian process classification and active learning with multiple annotators". In: ICML. PMLR, pp. 433–441.

WAUM (crowdsourcing)

ALINC=5.49

ALIMC=5.55

ALIMC=4.99

AUNC=5.50

AUMC-5 20

AUMORS 65

AUMC=5.50 101

AUMC=5.52

AUMC=5.44

ALMC=5.6

AUM---0.99

AUM (no crowdsourcing)

AUM--0.58

WAUM (crowdsourcing)

0.66

AUMC (crowdsourcing)

AUMO-S AS

AUNC=5.5

ALMC-SSS

at MC=5.49

AUMC=5 50

10

AUM--1.3

AUM--0.92

AUM

(no crowdsourcing)

WAUM (crowdsourcing)

WAUM=0.61

WAUM=0.61

at MC=5.49

ALMC-SSS

WAUM

WAUN

AUNC=5.5

AUMC=5.50 10

AUM--1.3

AUM

(no crowdsourcing)

ABLATION STUDY

LabelMe

CIFAR-10H

In short

- ▶ Introduced the WAUM to find ambiguous images
- ▶ Better quality data can improve performance

25

In short

- ▶ Introduced the WAUM to find ambiguous images
- ▶ Better quality data can improve performance

Towards large-scale problems

- DS model and confusion matrices do not scale
- ▶ What is currently done in large-scale settings?
- ► Can we evaluate their performance?

In short

- ▶ Introduced the WAUM to find ambiguous images
- ▶ Better quality data can improve performance

Towards large-scale problems

- DS model and confusion matrices do not scale
- ▶ What is currently done in large-scale settings?
- ► Can we evaluate their performance?
 - To evaluate we need data and code that scale!

THE PEERANNOT LIBRARY

27

► Python library for small and large crowdsourced datasets

pip install peerannot

Documentation available at: https://peerannot.github.io

peerannot		Search docs Q 0 -
Decaration	Que q	
	Wark to deep dive into the library? In addition to the tutorials, you can find the full a hore: Image: Im	AP and CU reference

► Handle large datasets: we implemented on-the-fly queries to avoid storing all data in memory (json data format)

► CLI (Command Line Interface) for **efficient pipelines running jobs**

- ► Handle large datasets: we implemented on-the-fly queries to avoid storing all data in memory (json data format)
- ► CLI (Command Line Interface) for **efficient pipelines running jobs**
- ► More identification metrics and aggregation strategies for classification

29

- ► Handle large datasets: we implemented on-the-fly queries to avoid storing all data in memory (json data format)
- ► CLI (Command Line Interface) for **efficient pipelines running jobs**
- More identification metrics and aggregation strategies for classification
- ► Seamless integration with PyTorch pipelines:
 - directly train Torchvision classifiers on the data
 - keep the same framework end-to-end
 - support top-*k* and calibration metrics at evaluation time

CROWDSOURCING IN LARGE SCALE: THE CASE OF PL@NTNET

PRESENTING PL@NTNET PIPELINE

- ▶ South Western European flora obs since 2017
- ▶ $n_{\text{worker}} \simeq 823\,000$ users answered more than $K \simeq 11000$ species
- ▶ $n_{\text{task}} \simeq 6700\,000\,\text{observations}$
- ▶ 9 000 000 votes casted
- ▶ Imbalance: 80% of observations are represented by 10% of total votes

- ▶ South Western European flora obs since 2017
- ▶ $n_{\text{worker}} \simeq 823\,000$ users answered more than $K \simeq 11000$ species
- ▶ $n_{\text{task}} \simeq 6700\,000\,\text{observations}$
- ▶ 9 000 000 votes casted
- ▶ Imbalance: 80% of observations are represented by 10% of total votes

► Extraction of 98 experts (TelaBotanica + expert knowledge)

https://zenodo.org/records/10782465

PL@NTNET AGGREGATION STRATEGY

Initial setting

Label switch

Invalidate

► Majority Vote (MV)

- ► Majority Vote (MV)
- ► Worker agreement with aggregate (WAWA) weight(w_i) = Accuracy($\{y_i^{(j)}\}_i, \{\hat{y}_i^{MV}\}_i$)

- ► Majority Vote (MV)
- ► Worker agreement with aggregate (WAWA) weight(w_i) = Accuracy($\{y_i^{(j)}\}_i, \{\hat{y}_i^{MV}\}_i$)
- ► **TwoThird** (from iNaturalist pipeline)
 - Need 2 votes
 - 2/3 of agreements

Results

Why?

- More data
- Could correct non-expert users
- ► Could invalidate bad quality observation

(17) I. Shumailov et al. (2024). "AI models collapse when trained on recursively generated data". In: Nature 631.8022, pp. 755–759.

Why?

- More data
- Could correct non-expert users
- ► Could invalidate bad quality observation

Main danger

▶ Model collapse⁽¹⁷⁾: users are already guided by AI predictions

- ► Al fixed weight:
 - weight fixed to 1.7
 - can invalidate two new users but is not self-validating

- ► Al fixed weight:
 - weight fixed to 1.7
 - can invalidate two new users but is not self-validating

► Al invalidating:

- weight fixed to 1.7
- can only invalidate observation

Strategies to integrate the AI vote

► Al as worker: naive integration

- ► Al fixed weight:
 - weight fixed to 1.7
 - can invalidate two new users but is not self-validating

► Al invalidating:

- weight fixed to 1.7
- can only invalidate observation

► Al confident:

- weight fixed to 1.7
- can participate if confidence in prediction high enough (θ_{score})

- ► Al fixed weight:
 - weight fixed to 1.7
 - can invalidate two new users but is not self-validating

► Al invalidating:

- weight fixed to 1.7
- can only invalidate observation
- ► Al confident:
 - weight fixed to 1.7
 - can participate if confidence in prediction high enough (θ_{score})

 \implies confident AI with $\theta_{\text{score}} = 0.7$ performs best... but invalidating AI could be preferred for safety \Leftarrow

CONCLUSION

In short:

- ► Identifying ambiguous data in crowdsourced datasets
- ► Creation of the **peerannot library** to run reproducible experiments
- ► Release a new large scale dataset
- ► Evaluation and improvements of the Pl@ntNet crowdsourcing setting

In short:

- ▶ Identifying ambiguous data in crowdsourced datasets
- ► Creation of the **peerannot library** to run reproducible experiments
- ► Release a new large scale dataset
- ► Evaluation and improvements of the Pl@ntNet crowdsourcing setting

Perspectives:

- ▶ Need for better data collection: **recommendation system**
- ► Extend the library for **multilabel** classification and **regression**

59

In short:

- ► Identifying ambiguous data in crowdsourced datasets
- ► Creation of the **peerannot library** to run reproducible experiments
- ► Release a new large scale dataset
- ► Evaluation and improvements of the Pl@ntNet crowdsourcing setting

Perspectives:

- ▶ Need for better data collection: **recommendation system**
- ► Extend the library for **multilabel** classification and **regression**

Thank you!

REFERENCES I

- Chu, Z., J. Ma, and H. Wang (2021). "Learning from Crowds by Modeling Common Confusions.". In: AAAI, pp. 5832–5840.
- Dawid, A. and A. Skene (1979). "Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm". In: J. R. Stat. Soc. Ser. C. Appl. Stat. 28.1, pp. 20–28.
- Hovy, D. et al. (2013). "Learning whom to trust with MACE". In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1120–1130.
- Ju, C., A. Bibaut, and M. van der Laan (2018). "The relative performance of ensemble methods with deep convolutional neural networks for image classification". In: J. Appl. Stat. 45.15, pp. 2800–2818.
- Lefort, T., A. Affouard, et al. (2024). "Cooperative learning of Pl@ntNet's Artificial Intelligence algorithm: how does it work and how can we improve it?" In: *submitted to Methods in Ecology and Evolution*.

REFERENCES II

- Lefort, T., B. Charlier, et al. (2024a). "Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin". In: Transactions on Machine Learning Research.
- (2024b). "Peerannot: Classification for Crowdsourced Image Datasets with Python". In: Computo.
- July 2024c). "Weighted majority vote using Shapley values in crowdsourcing". In: CAp 2024 - Conférence sur l'Apprentissage Automatique. Lille, France.
- Peterson, J. C. et al. (2019). "Human Uncertainty Makes Classification More Robust". In: ICCV, pp. 9617–9626.

Pleiss, G. et al. (2020). "Identifying mislabeled data using the area under the margin ranking". In: NeurIPS.

Rodrigues, F. and F. Pereira (2018). "Deep learning from crowds". In: AAAI, Vol. 32.

Rodrigues, F., F. Pereira, and B. Ribeiro (2014). "Gaussian process classification and active learning with multiple annotators". In: ICML. PMLR, pp. 433-441.

References III

- Servajean, M. et al. (2017). "Crowdsourcing thousands of specialized labels: A Bayesian active training approach". In: *IEEE Transactions on Multimedia* 19.6, pp. 1376–1391.
- Shumailov, I. et al. (2024). "AI models collapse when trained on recursively generated data". In: *Nature* 631.8022, pp. 755–759.
- Whitehill, J. et al. (2009). "Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise". In: *NeurIPS*. Vol. 22.

PL@NTNET AGGREGATION STRATEGY WEIGHT FUNCTION

$$f(n_j) = n_j^{\alpha} - n_j^{\beta} + \gamma \text{ with } \begin{cases} \alpha = 0.5\\ \beta = 0.2\\ \gamma \simeq 0.74 \end{cases}$$

▶ With 8 identified species one becomes self-validating

PL@NTNET AGGREGATION STRATEGY WEIGHT FUNCTION

$$f(n_j) = n_j^{\alpha} - n_j^{\beta} + \gamma \text{ with } \begin{cases} \alpha = 0.5\\ \beta = 0.2\\ \gamma \simeq 0.74 \end{cases}$$

▶ With 8 identified species one becomes self-validating

But observations can be invalidated at any time in the future

COMPARISON WITH ENTROPY

► Entropy is irrelevant with few votes per task