HIGH DIMENSIONAL PENALIZED LINEAR MODELS WITH INTERACTIONS USING GRAPHICS CARD

INTERNSHIP MASTER 2 BIOSTATISTICS (NOW SSD)

Tanguy Lefort IMAG, Univ Montpellier, CNRS LIRMM, Inria

Joseph Salmon IMAG, Univ Montpellier, CNRS Institut Universitaire de France (IUF)

Benjamin Charlier IMAG, Univ Montpellier, CNRS

We denote $X = [x_1, \ldots, x_p] \in \mathbb{R}^{n \times p}, y \in \mathbb{R}^n$ and $\beta \in \mathbb{R}^p$ such that $y \simeq X\beta$

Ordinary least squares:

$$\hat{\beta}^{ls} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2n} \| y - X\beta \|_2^2 \Longleftrightarrow \hat{\beta}^{ls} = (X^\top X)^{-1} X^\top y$$

Challenge with high dimension:

- if p > n we lose the uniqueness,
- $X^{\top}X$ may be ill conditioned ($\kappa = \frac{\text{largest singular value}}{\text{smallest singular value}} \gg 1$) due to multicolinearity amongst features
- too many active features is not interpretable (genomics dataset)

We denote $X = [x_1, \dots, x_p] \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$ and $\beta \in \mathbb{R}^p$ such that $y \simeq X\beta$

Ordinary least squares:

$$\hat{\beta}^{ls} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2n} \| y - X\beta \|_2^2 \longleftrightarrow \hat{\beta}^{ls} = (X^\top X)^{-1} X^\top y$$

Challenge with high dimension:

- if p > n we lose the uniqueness,
 - make the problem strictly convex.
- $X^{\top}X$ may be ill conditioned ($\kappa = \frac{\text{largest singular value}}{\text{smallest singular value}} \gg 1$) due to multicolinearity amongst features
 - Shift spectrum by a small quantity using ℓ_2 penalty
- too many active features is not interpretable (genomics dataset)
 - Feature selection using ℓ_1 penalty

$Elastic-Net^{(1)} = combination of LASSO^{(2)} and Ridge^{(3)}$:

Elastic-Net

Considering tuning parameters $\lambda_1, \lambda_2 > 0$:

$$\hat{\beta}^{enet} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2n} \left\| y - X\beta \right\|_2^2 + \lambda_1 \left\| \beta \right\|_1 + \frac{\lambda_2}{2} \left\| \beta \right\|_2^2$$

⁽¹⁾ H. Zou and T. Hastie (2005). "Regularization and variable selection via the elastic net". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 67.2, pp. 301–320.

⁽²⁾ R. Tibshirani (1996). "Regression Shrinkage and Selection via the Lasso". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 58.1, pp. 267–288.

⁽³⁾ A. Tikhonov (1943). "On the stability of inverse problems". In: Dokl. Akad. Nauk SSSR 39, pp. 176–179.

INTRODUCTION ELASTIC-NET ESTIMATOR

 $\mathsf{Elastic-Net}^{(1)} = \mathsf{combination} \ \mathsf{of} \ \mathsf{LASSO}^{(2)} \ \mathsf{and} \ \mathsf{Ridge}^{(3)} \colon$

Elastic-Net

Considering tuning parameters $\lambda_1, \lambda_2 > 0$:

$$\hat{\beta}^{enet} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2n} \left\| y - X\beta \right\|_2^2 + \lambda_1 \left\| \beta \right\|_1 + \frac{\lambda_2}{2} \left\| \beta \right\|_2^2$$

And if we add the first order interactions to the model:

Elastic-Net with interactions

The interactions matrix is $Z \in \mathbb{R}^{n \times q}$, and coefficients are $\Theta \in \mathbb{R}^{q}$.

$$\hat{\beta}^{\text{inter}} \in \underset{\substack{\beta \in \mathbb{R}^{p} \\ \Theta \in \mathbb{R}^{q}}}{\arg\min \frac{1}{2n}} \| y - X\beta - Z\Theta \|_{2}^{2} + \lambda_{\beta,\ell_{1}} \| \beta \|_{1} + \frac{\lambda_{\beta,\ell_{2}}}{2} \| \beta \|_{2}^{2}$$
$$+ \lambda_{\Theta,\ell_{1}} \| \Theta \|_{1} + \frac{\lambda_{\Theta,\ell_{2}}}{2} \| \Theta \|_{2}^{2}$$

(1) H. Zou and T. Hastie (2005). "Regularization and variable selection via the elastic net". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 67.2, pp. 301–320.

(2) R. Tibshirani (1996). "Regression Shrinkage and Selection via the Lasso". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 58.1, pp. 267–288.

(3) A. Tikhonov (1943). "On the stability of inverse problems". In: Dokl. Akad. Nauk SSSR 39, pp. 176–179.

Our goal: Solve the Elastic-Net problem

- for high dimensional genomics data,
- using graphics card parallelization,
- ► at least as fast as currently used algorithms like Coordinate Descent with interactions⁽⁴⁾.

⁽⁴⁾ F. Bascou, S. Lèbre, and J. Salmon (2020). "Debiasing the Elastic Net for models with interactions". In: Journées de Statistique.

Our goal: Solve the Elastic-Net problem

- for high dimensional genomics data,
- using graphics card parallelization,
- ► at least as fast as currently used algorithms like Coordinate Descent with interactions⁽⁴⁾.

Problems:

- the interactions matrix is not storable in high dimensions,
- graphics cards need a lot of data to parallelize operations efficiently,
- we use solvers, but when do we stop them ?

(4) F. Bascou, S. Lèbre, and J. Salmon (2020). "Debiasing the Elastic Net for models with interactions". In: Journées de Statistique.

Minimize $F(\beta) = \frac{1}{2n} \|y - X\beta\|_2^2$: with step $\eta > 0$ at epoch $k \in \mathbb{N}$,

Gradient Descent: 1 problem of dimension p

$$\beta^{k+1} \longleftarrow \beta^k - \eta \underbrace{\frac{1}{n} X^\top (X \beta^k - y)}_{\frac{\partial F}{\partial \beta} (\beta^k)}$$

FROM GRADIENT TO COORDINATE DESCENT On least squares problem

Minimize $F(\beta) = \frac{1}{2n} \|y - X\beta\|_2^2$: with step $\eta > 0$ at epoch $k \in \mathbb{N}$,

Gradient Descent: 1 problem of dimension p

$$\beta^{k+1} \longleftarrow \beta^k - \eta \underbrace{\frac{1}{n} X^\top (X\beta^k - y)}_{\frac{\partial \mathcal{E}}{\partial \beta} (\beta^k)}$$

Coordinate Descent: p problems of dimension 1

For j = 1, ..., p,

$$\beta_j^{k+1} \longleftarrow \beta_j^k - \eta \underbrace{\frac{1}{n} x_j^\top (X \beta^k - y)}_{\frac{\partial F}{\partial \beta_j} (\beta^k)}$$

$$\underset{\beta \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \underbrace{\frac{1}{2n} \|y - X\beta\|_{2}^{2}}_{\operatorname{smooth} F(\beta)} + \underbrace{\lambda_{1} \|\beta\|_{1} + \frac{\lambda_{2}}{2} \|\beta\|_{2}^{2}}_{\operatorname{non-smooth separable} g(\beta)}$$

$$\underset{\beta \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \underbrace{\frac{1}{2n} \|y - X\beta\|_{2}^{2}}_{\operatorname{smooth} F(\beta)} + \underbrace{\lambda_{1} \|\beta\|_{1} + \frac{\lambda_{2}}{2} \|\beta\|_{2}^{2}}_{\operatorname{non-smooth separable} g(\beta)}$$

Gradient descent on F with step $\eta > 0$:

$$\beta^{k+1} \longleftarrow \beta^k - \eta \frac{1}{n} X^\top (X\beta - y)$$

AND WITH A NON DIFFERENTIABLE FUNCTION? PROXIMAL OPERATORS

$$\underset{\beta \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \underbrace{\frac{1}{2n} \|y - X\beta\|_{2}^{2}}_{\operatorname{smooth} F(\beta)} + \underbrace{\lambda_{1} \|\beta\|_{1} + \frac{\lambda_{2}}{2} \|\beta\|_{2}^{2}}_{\operatorname{non-smooth separable} g(\beta)}$$

Proximal Gradient descent on F + g with step $\eta > 0$:

$$\beta^{k+1} \longleftarrow \operatorname{prox}_{\eta g} \left(\beta^k - \eta \frac{1}{n} X^{\top} (X \beta^k - y) \right)$$

Proximal operator

Let f a convex proper closed function, for $\mu > 0$:

$$\operatorname{prox}_{\mu f}(u) = \operatorname*{arg\,min}_{x \in \operatorname{dom} f} \left\{ f(x) + \frac{1}{2\mu} \left\| x - u \right\|_2^2 \right\} \ .$$

PROXIMAL OPERATOR For the Elastic-Net

Elastic-Net penalty proximal operator

Let $h(x) = ||x||_1 + \frac{\gamma}{2} ||x||_2^2$, $\gamma > 0$, we know ⁽⁵⁾ that for $\mu > 0$:

$$\operatorname{prox}_{\mu h}(x) = \frac{1}{1 + \mu \gamma} \operatorname{prox}_{\mu \| \cdot \|_1}(x) = \frac{\operatorname{sign}(x)}{1 + \mu \gamma} (|x| - \mu)_+$$

where sign $(x)(|x| - \mu)_+$ is the soft thresholding operator $ST(x, \mu)$.

(5) N. Parikh and S. Boyd (2014). "Proximal Algorithms". In: Found. Trends Optim. 1.3, pp. 127–239, p. 189

Possibilities to use accelerations:

- Theoretical:
 - inertial: heavy ball-like⁽⁶⁾,
 - structure of the iterates: Anderson⁽⁷⁾,
 - stochastic directions:⁽⁸⁾,
 - structure of the problem: use block updates⁽⁹⁾.
- Computational:
 - Numba library:⁽¹⁰⁾,
 - GPU acceleration with CUDA.

(6) Y. Nesterov (1983). "A method of solving a convex programming problem with convergence rate $O(1/k^2)$ ". In: Sov. Math. Dokl. Vol. 27. 2.

⁽⁷⁾ Q. Bertrand and M. Massias (2021). Anderson acceleration of coordinate descent.

⁽⁸⁾ Y. Nesterov (2012). "Efficiency of coordinate descent methods on huge-scale optimization problems". In: SIAM Journal on Optimization 22.2, pp. 341–362.

⁽⁹⁾ A. Beck (2017). First-Order Methods in Optimization. Vol. 25. SIAM.

⁽¹⁰⁾ S. Lam, A. Pitrou, and S. Seibert (2015). "Numba: A llvm-based python jit compiler". In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pp. 1–6.

WHY USE A GPU ? Accelerated PGD on CPU is not very competitive

Benchmark LASSSO problem on CPU (Figure made with BenchOpt library $^{(11)}$)

Benchmark product $Z\Theta$

WHY USE A GPU ? Accelerated PGD on CPU is not very competitive

Benchmark LASSSO problem on CPU (Figure made with BenchOpt library $^{(11)}$)

And it is **easy** with PyTorch:

Benchmark product $Z\Theta$

A = torch.tensor([1., 2.], device="cuda")
B = torch.tensor([1., 2.]).to("cuda")

(11) https://benchont.github.io

BUILDING THE INTERACTIONS FIRST ORDER INTERACTIONS BY BLOCK

See the interactions as blocks generated from $X = [x_1 | \dots | x_p]$:

CBPG update on
$$\Theta$$

For
$$j = 1, ..., p$$
:
 $\Theta_{\mathcal{B}_{q}(j)}^{k+1} \longleftarrow \frac{1}{1 + \frac{1}{L_{i}}\lambda_{\Theta,\ell_{2}}} \operatorname{ST}\left(\Theta_{\mathcal{B}_{q}(j)}^{k} - \frac{1}{L_{j}n}Z_{\mathcal{B}_{q}(j)}^{\top}(X\beta^{k+1} + Z\Theta^{k} - y), \frac{1}{L_{j}}\lambda_{\Theta,\ell_{1}}\right)$

L

▶ steps
$$L_j = \frac{\|Z_{\mathcal{B}_q(j)}^{*}Z\|_2}{n}$$
, $j = 1, ..., p$ Lipschitz constants for each block

computed with iterative method (Lánczos algorithm⁽¹³⁾).

⁽¹²⁾ M. Massias (2019). "Sparse high dimensional regression in the presence of colored heteroscedastic noise: application to M/EEG source imaging". PhD thesis. Telecom Paristech; A. Beck (2017). First-Order Methods in Optimization. Vol. 25. SIAM.

⁽¹³⁾ C. Lánczos (1952). "Solution of systems of linear equations by minimized iterations". In: J. Res. Nat. Bur. Standards 49.1, pp. 33-53.

WITH NON-DIFFERENTIABLE FUNCTIONS SUBGRADIENTS

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a real convex function.

Subdifferential ∂f

At $x_0 \in \mathbb{R}^n$:

$$\partial f(\mathbf{x}_0) = \{ \mathbf{u} \in \mathbb{R}^n, f(\mathbf{x}) \ge f(\mathbf{x}_0) + \langle \mathbf{u}, \mathbf{x} - \mathbf{x}_0 \rangle \, \forall \mathbf{x} \in \mathbb{R}^n \}$$

Example: The absolute value at the origin

$$\partial |\cdot|_{|x} = \begin{cases} \{-1\}, & \text{if } x < 0\\ \{1\}, & \text{if } x > 0\\ [-1,1], & \text{if } x = 0 \end{cases}$$

$$\mathsf{Elastic-Net:} \arg\min_{\beta \in \mathbb{R}^p} \tfrac{1}{2n} \| y - X\beta \|_2^2 + \lambda_1 \|\beta\|_1 + \tfrac{\lambda_2}{2} \|\beta\|_2^2 = \arg\min \mathsf{F}_{enet}(\beta).$$

KKT violation

Our criterion: how much do we violate the KKT conditions:

$$d_{\|\cdot\|_{\infty}}(\mathbf{0},\partial F_{enet}(\beta)) \leqslant \epsilon \Longleftrightarrow \inf_{g \in \partial F_{enet}(\beta)} \|g\|_{\infty} \leqslant \epsilon$$

Splitting along the coordinates, denoting $r = y - X\beta$:

$$d\left(0,\frac{1}{n}X_{j}^{\top}(X\beta-y)+\lambda_{1}\partial_{|\cdot|}(\beta_{j})+\lambda_{2}\beta_{j}\right)=\frac{1}{n}\left|\mathrm{ST}\left(X_{j}^{\top}r-n\lambda_{2}\beta_{j},n\lambda_{1}\right)\right|$$

X from Gaussian distribution, n = 20000, p = 500 (train/test = 75%/25%), SNR = 10, 1% of non-zero values in β^* and Θ^* .

- ℓ_1 penalty is $\frac{\lambda_{\max}}{\ell_1 \text{ factor}}$,
- ℓ_2 penalty is $\frac{\lambda_{\text{max}}}{10}$,
- $\epsilon = 10^{-3}$ (PGD did not converge for ℓ_1 factor > 250).

- CD faster at the beginning,
- CBPG faster after,
- convergence issues with PGD.

GENOMICS DATASET Presentation

- n = 19393 samples (genes) and 531 features (141246 interactions *i.e.*, way too much!)⁽¹⁴⁾
- y is the gene expression in one patient (the first)

Correlation matrix of X

- 20 features for (di)nucleotides in Core region
- > 20 Distal Upstream region promoter
- 20 in Distal Downstream region promoter
- 471 for motif scores in the Core region (in [0,1] close to 1)

GENOMICS DATASET Presentation

y is the gene expression in one patient (the first)

Correlation matrix of the first 60 features

- 20 features for (di)nucleotides in Core region
- > 20 Distal Upstream region promoter
- 20 in Distal Downstream region promoter
- 471 for motif scores in the Core region (in [0,1] close to 1)

GENOMICS DATASET What we need to know (numerically)

Very ill conditioned data (by block)

0.200 0.175 0.150 0.125 0.125 Oensity 0.100 0.075 0.050 0.025 0.000 -5.0 -2.50.0 2.5 5.0 7.5 10.0 12.5 15.0 gene expression

Preprocessing on *y*: log-transformed for unimodaltiy (shifted by $\epsilon > 0$):

GENOMICS DATASET SOLVER ON PATH

Running our solvers considering warmstarts:

- ℓ_1 penalty: 10 log-spaced values on a grid from λ_{\max} to $\lambda_{\max}/100$
- ℓ_2 penalty: set to $20\lambda_{\ell_1,\max}$

• All resulting in the same active features.

• It is possible to be faster using GPU and inertial acceleration ...

- It is possible to be faster using GPU and inertial acceleration ...
- **but** there is a tradeoff with the precision.

- It is possible to be faster using GPU and inertial acceleration ...
- **but** there is a tradeoff with the precision.
- CBPG algorithms needs more epochs than CD but compute them faster.

- It is possible to be faster using GPU and inertial acceleration ...
- **but** there is a tradeoff with the precision.
- CBPG algorithms needs more epochs than CD but compute them faster.

Possible leads:

- Consider other types of accelerations,
- Compute more precise convergence rates for the KKT violation criterion.
- Keep working on the BenchOpt library.

REFERENCES I

- Bascou, F., S. Lèbre, and J. Salmon (2020). "Debiasing the Elastic Net for models with interactions". In: *Journées de Statistique*.
- Beck, A. (2017). First-Order Methods in Optimization. Vol. 25. SIAM.
 - Bertrand, Q. and M. Massias (2021). Anderson acceleration of coordinate descent.
- Bessière, C. et al. (Jan. 2018). "Probing instructions for expression regulation in gene nucleotide compositions". In: *PLOS Computational Biology* 14.1, pp. 1–28.
- Lam, S., A. Pitrou, and S. Seibert (2015). "Numba: A llvm-based python jit compiler". In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pp. 1–6.
- Lánczos, C. (1952). "Solution of systems of linear equations by minimized iterations". In: J. Res. Nat. Bur. Standards 49.1, pp. 33–53.
- Massias, M. (2019). "Sparse high dimensional regression in the presence of colored heteroscedastic noise: application to M/EEG source imaging". PhD thesis. Telecom Paristech.

References II

- Nesterov, Y. (1983). "A method of solving a convex programming problem with convergence rate $\mathcal{O}(1/k^2)$ ". In: *Sov. Math. Dokl.* Vol. 27. 2.
- (2012). "Efficiency of coordinate descent methods on huge-scale optimization problems". In: SIAM Journal on Optimization 22.2, pp. 341–362.
- Parikh, N. and S. Boyd (2014). "Proximal Algorithms". In: Found. Trends Optim. 1.3, pp. 127–239.
- Tibshirani, R. (1996). "Regression Shrinkage and Selection via the Lasso". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 58.1, pp. 267–288.
- Tikhonov, A. (1943). "On the stability of inverse problems". In: Dokl. Akad. Nauk SSSR 39, pp. 176–179.
- Zou, H. and T. Hastie (2005). "Regularization and variable selection via the elastic net". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 67.2, pp. 301–320.

Thank you for your attention!

https://benchopt.github.io/results

BenchOpt benchmark results

Last updated: 2021-06-08 15:02

8 benchmarks in total.

Available Benchmarks

🙍 BenchOpt results: logreg l2 🖸

Last updated: 2021-06-08 15:01 with 3 benchmark results in total.

∃ Filter Informations

Results	* Datasets	¢	System info)	¢
logreg_12 2020-12-16_18h57m34	Simulated n_samples=200,n_features=500			۲ ۲	
logreg,12 2021-03-06_13148m00	Rcv1		cpu: 16 ram (GB): 32 platform: Darwin 19.0.0- x86_64 processor: Intel(R) Core(TM) 19-9880H CPU @ 2.30GHz	12 12	
logreg_l2 2021-03-18_02h11m46	Covtype_binary Madelon Simulated n_samples=200,n_features=500 n_samples=1000,n_features=10		cpu: 48 O ram (GB): 755	6 10 10	
Showing 1 to 3 of 3 entries		_	Previous	1	Next

THE BENCHOPT LIBRARY FILTER FOR MOBILE DEVICES

Result on benchmark_quantile_regression benchmark

benchmark_quantile_regression_benchopt_run_2021-04-01_13h28m43.csv

System informations: cpu: 16 ram (GB): 32 🖨

- platform: Darwin19.0.0-x86_64
- processor: Intel(R) Core(TM) i9-9880H CPU @ 2.30GHz
- numpy: 1.19.4 blas=NO_ATLAS_INFO lapack=lapack
- scipy: 1.6.2

```
Dataset [Simulated[n_samples=100,n_features=50] v Objective [L1-regularized Quantile Regression[reg=0.05,quantile=0.2] v) Kind [suboptimality_curve v]
Log-scale [semilog-y v]
```

THE BENCHOPT LIBRARY INTERACTIVE RESULTS

Ordinary Least Squares[fit_intercept=False] Data: Simulated[n_samples=1000,n_teatures=500]