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Abstract
French: Le modèle linéaire est utilisé en statistiques pour sa simplicité, et l’interprétabilité des
résultats obtenus. Sur des données génomiques, les dimensions très grandes imposent d’utiliser des
méthodes robustes qui sélectionnent les variables actives pour avoir des résultats interprétables pour
des biologistes. En plus de l’effet de nos variables on cherche aussi à capturer les effets des interactions,
ce qui augmente encore la dimension du problème et les phénomènes de colinéarité. Pour pallier à cela,
nous considérons l’Elastic-Net sur le problème augmenté. La descente par coordonées (Wu and Lange,
2008) est très utilisée pour résoudre ce type de problèmes, mais ce n’est pas l’unique possibilité. Nous
utilisons la structure du problème avec interactions du premier ordre pour paralléliser des algorithmes
de descente de gradient proximal. Ceux-ci sont connus pour être plus lents à converger du point de vue
de la complexité, mais utiliser la parallélisation sur carte graphique permet dans certaines situations
d’être plus rapide. Ce travail sur les méthodes d’optimisation s’inscrit dans le développement de la
librairie BenchOpt permettant de comparer facilement différents algorithmes.

English: Linear models are used in statistics for their simplicity and the interpretability of the re-
sults. On genomics datasets, large dimensions need robust methods that induce sparsity to select inter-
pretable active features for biologists. In addition to the main features, we also capture the effects of
the interactions, which increase the dimension of the problem and the multicolinearity. To counteract
these issues, we use the Elastic-Net on the augmented problem. Coordinate Descent (Wu and Lange,
2008) is mostly used nowadays for that, but there are other methods available. We exploit the structure
of our problem with first order interactions to use parallelized proximal gradient descent algorithms.
Those are known to be more computationally demanding in order of magnitude, but parallelizing on a
graphics card let us be faster in some situations. This work is set in the development of the BenchOpt

library. This library let us easily compare different optimization algorithms.

Github repository The code to generate the Figures and other results in this report is available at:

https://github.com/tanglef/interactionsmodel
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1Introduction

1.1 Building models, but at what cost?

Supervised learning uses a cost function that we aim to minimize. However, minimizing such functions
with the data available can sometimes be costly both in term of time and memory. In a regression
setting, the popular least-squares estimator benefits from great interpretability. For a response y P Rn

and some data X PRnˆp a least-squares estimator β̂ls is any solution of the optimization problem:

β̂ls P argmin
βPRp

1
2n

∥∥∥y´Xβ∥∥∥2
2
.

Some issues can arise like the curse of dimensionality. When p is larger than n, uniqueness of the
solution is lost, leading to non interpretable coefficients. For this reason, penalties can be added to
the cost function to recover targeted structures. We focus on the Elastic-Net (Zou and Hastie, 2005)
estimator β̂en. It uses a trade-off between the `1 (LASSO (Tibshirani, 1996)) and `2 (Ridge (Tikhonov,
1943)) penalties on the coefficients to induce sparsity and regularize the problem. We remind that the
`1 norm is the sum of the magnitude of the coefficients and the squared `2 norm is the sum of squares
of the coefficients. The Elastic-Net is thus

β̂en P argmin
βPRp

1
2n

∥∥∥y´Xβ∥∥∥2
2
`λ`1

∥∥∥β∥∥∥
1
`
λ`2

2

∥∥∥β∥∥∥2
2
. (1.1)

In our model, we want to handle first order interactions. To do so, we have to consider a matrix Z
whose columns are involving a function that creates new covariates from couples of original data. This
function in all generality could be a max, min,. . . . We chose to focus on the element-wise product. This
is not the most interpretable for biologists, but it creates a base that is easy to implement and easy to
modify afterwards for new functions. More practically, it means that Z has n samples and d features
with d the number of unique interactions. As for the estimation, in addition to the vector β P Rp, we
need to estimate a vector Θ PRd . For the 1st feature there are p other features to interact with, pp´1q for
the 2nd ,. . . , two for the pp´1qth and one for the last. So in total there are d “ ppp`1q{2 unique interactions
to consider.

The memory footprint of Z is in practice quickly too large for the computer. From Figure 1.1, we
see that the memory footprint of Z with 500 features and 20000 samples in X exceeds 10Gb. So there
are difficulties not only for the statistics part, but also for the implementation of the solvers.

Research for fast algorithms to solve Elastic-Net or LASSO problems is very active. These problems
search for the active variables i.e., without interactions tβi : βi , 0, i “ 1, . . . ,pu. Some strategies like
the working set are to build up the support by including features that are likely active (Johnson and
Guestrin, 2015). Other methods (safely) discard features that are not relevant using the duality gap
(Ndiaye et al., 2017). Solvers can also be accelerated. Inertial acceleration like Nesterov (Nesterov,
2012) lead to theoretically faster methods (but sometimes not in practice). Anderson extropolation
(Bertrand and Massias, 2021) can also be used. It is not an inertial acceleration but considers the
structure of the iterates to converge faster. Stochastic methods are also used to determine the direction
to optimize (Chen, Li, and Lu, 2021).
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Figure 1.1: Number of features in the models with and without interactions (left) and size of the inter-
action matrix in Gigabytes for varying number of features in X (right).

On top of the theoretical accelerations, libraries like Numba (Lam, Pitrou, and Seibert, 2015) lead to
some computational speed up. This is what is used in (Bascou, Lèbre, and Salmon, 2020) to solve the
Elastic-Net with interactions. In our work, we propose to use the GPU with inertial acceleration.

1.2 Computation with a GPU

With the rise of new technologies for always better graphical rendering in video games, graphics cards
have become a computational powerhouse. Generally, computations are made on CPUs (Central Pro-
cessing Unit). Standard programs are designed for them, so there is no extra manipulation needed.
This is different for GPUs (Graphic Processing Unit).

Figure 1.2: Simplified architecture of a GPU adapted from (Feydy et al., 2020, chapter 2). Typically,
the data is first loaded onto the CPU. Then it is copied (sometimes in part) to the GPU device. This
operation is very costly. There is a hierarchy of memory from here. Each GPU has an L2 cache which
communicates with several independant L1 caches for each block. Threads operations are then exe-
cuted simultaneously, organized in blocks. After all operations are done, the results are transferred
back to the CPU.

A GPU has a very large amount of cores allowing heavy parallelizations, possibly asynchronously
(see Figure 1.2). This means that operations are kept in a queue and computed when needed. In the
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corporate world of GPUs, there is mostly only NVidia that is investing for faster devices for the AI
research. They have developed the CUDA toolkit for developers to leverage GPUs performances. At first
code in C / C++, libraries like PyTorch, TensorFlow in Python or RCUDA in R created APIs to use CUDA

acceleration more easily.

There are some changes that need to be addressed with GPUs. Some of them are discussed in
Chapter 3. But one (if not the main) to remember, is that transfers between CPUs and GPUs are usually
creating the computation bottleneck. Transferring data from one device to another is very costly. So
even if Z was storable on the CPU, making transfers to the GPU by parts would be very slow.

1.3 Leveraging GPUs computations for the optimization

State-of-the-art solvers consider coordinate descent type algorithms for sparse regression. The strength
of the GPU comes from the possibility to process a lot of data simultaneously. These algorithms treat
each feature separately, so very few data at a time. Our goal is thus to determine if some methods
generally slow on CPUs could be competitive using CUDA acceleration. After presenting the (proximal)
gradient descent methods we will explore some pros and cons of using GPUs in such settings. Then we
apply our solvers to simulated datasets and a real genomics dataset to explore different behaviors. One
of the difficulties encountered when dealing with such algorithms is the convergence. Indeed, we need
a stopping criterion in order to decide when the convergence is reached. For that, we derive the KKT
violation criterion for the Elastic-Net with interactions.

This work was made during an internship supervised by Joseph Salmon1 and Benjamin Charlier2

at the Institut Montpellierain Alexender Grothendieck. The base material is from the ongoing work of
Florent Bascou3. The genomics dataset was provided by Sophie Lèbre4.

1http://josephsalmon.eu/
2https://imag.umontpellier.fr/˜charlier
3https://bascouflorent.github.io/
4https://www.univ-montp3.fr/miap/˜lebre/

http://josephsalmon.eu/
https://imag.umontpellier.fr/~charlier
https://bascouflorent.github.io/
https://www.univ-montp3.fr/miap/~lebre/
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In a linear model, when the number of features is too large, we need to perform some kind of feature
selection to keep the benefits of the interpretability. To do so, it is now common to penalize the prob-
lem. Methods such as LASSO (Tibshirani, 1996) or Elastic-Net (Zou and Hastie, 2005) use penalties to
counteract different issues. The `1 penalty is used to induce some sparsity in the obtained estimation
and the `2 penalty to take into account the correlation amongst the features and regularize the data.

With a dataset X P R
nˆp, the interactions matrix Z has Opp2q features, and thus quickly becomes

very large. This leads to solvers very time consuming in practice. Since our problem has a specific
architecture, we can use methods that exploit it: like block optimization solvers. We compare a Coor-
dinate Descent with interactions (Bascou, Lèbre, and Salmon, 2020) with Proximal Gradient Descent
algorithms (Beck, 2017). We exploit the structure by block of the interaction matrix (Section 2.4) to use
the Cyclic Block Proximal Gradient method.

2.1 Notations and reminders

We denote rks “ t1, . . . , ku. For any matrix A, Aij is its pi, jq-entry, aj the jth column. For a subset J Ă rks,
AJ is the sub-matrix pajqjPJ with #J columns. We use the same notation on a vector to consider the
components of those indexes. The 2-norm ‖A‖2 is the largest singular value of A in magnitude. For two
vectors u,v P Rk , pud vqi “ uivi is the element-wise product. The `1 norm is ‖u‖1 “

∑
jPrks |ui |, and the

squared `2 norm is ‖u‖22 “
∑
jPrksu

2
j .

In the followings, we will consider our dataset the matrix X “ rx1| . . . |xps P R
nˆp the concatenation

of the p features. Following the ideas from (Le Morvan and Vert, 2018), we use τK : rps2 ÝÑ rKs a
function to index our interactions. Meaning that in the interaction matrix Z, ZτK pi,jq “ xi d xj . In our
situation, we have K “ q “ ppp`1q{2. And finally, we define the index of the block generated by xj as the
branch BKpjq :“ tτKpj, lq, l P rpsu. So for example

ZBqp2q “ rx2d x2| . . . |x2d xps .

2.2 Presentation of the model

For a dataset X PRnˆp, the Elastic-Net estimator with first order interactions Z reads:

pp P min
βPRp

ΘPRq

1
2n

∥∥∥y´Xβ´ZΘ∥∥∥2
2
`λβ,`1

∥∥∥β∥∥∥
1
`λΘ,`1 ‖Θ‖1`

λβ,`2

2

∥∥∥β∥∥∥2
2
`
λΘ,`2

2
‖Θ‖22 (P )

P min
βPRp

ΘPRq

f pβ,Θq` g
p1q
λβ,`1 ,λβ,`2

pβq` g
p2q
λΘ,`1 ,λΘ,`2

pΘq .

Splitting the two penalty functions allow us to consider a gradient based descent algorithm for the
minimization, alternating the optimization on β and Θ.

2.2.1 Optimization tools

Since our objective to minimize is a convex non-differentiable function, it is necessary for us to remind
some mathematical tools. In the following, the functions considered are proper (extended real function
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that is not identically equal to `8 and cannot take the value ´8). They are also closed (their epigraph
(see Definition 2.2.3) is a closed set) and convex.

Definition 2.2.1. Let f : X Ñ R Y t`8u. The proximal operator of f evaluated at u P X , denoted by
proxµf puq, with µą 0 is defined as:

proxµf puq “ argmin
xPX

"

f pxq`
1

2µ
}x´u}22

*

, . (2.1)

Proximal operators are essential in optimization methods. It is indeed possible to show (Beck, 2017,
p. 270) that using a proximal operator to find the next iterate in a problem to minimize formulated
as a sum is a generalization of solving a constrained-set objective minimization with projected gradi-
ent method (Combettes and Pesquet, 2011). Closely related to the proximal operators is the infimal
convolution:

Definition 2.2.2. Let f and g two functions in RYt`8u. Then the infimal convolution f �g is:

f �gpxq “ inf
uPX

tf puq` gpx´uqu . (2.2)

It is easy to see how the infimal convolution f �g is a regularization of the function f in the convex
case by looking at the epigraphs (Fajardo, Vicente-Pérez, and Rodrı́guez, 2012).

Definition 2.2.3. For a real function f over X , the epigraph epipf q is:

epipf q “ tpx,yq P X ˆR |f pxq ď yu .

The link with the infimal convolution is given thanks to the Minkowski sum. As a reminder, the
Minkowski sum of two sets of vectors A and B is: A‘B“ ta` b,a P A,b P Bu .

Proposition 1. For two real functions f and g:

epipf �gq “ epipf q‘ epipgq . (2.3)

Let us consider an example to visualize Equation (2.3). For x P R, we take f pxq “ |x| p1` ιp|x| ď 1qq
and gpxq “ ιp0 ď x ď 2q, with ι the convex indicator function that equals 0 if the condition is met and
`8 o.w. Then

f �gpxq “min
uPR

t|u| p1` ιp´1ď u ď 1qq` ιp0ď x´u ď 2qu .

1 0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
epi(f)
epi(g)

(a) Epigraphs of f pxq “ |x| p1` ιp|x| ď 1qq and
gpxq “ ιp0ď x ď 2q.

1 0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
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(b) Epigraph of f �gpxq.

Figure 2.1: Visualization that the epigraph of the infimal convolution is the Minkowski’s sum of the
epigraphs.

This implies that f �gpxq is not infinite for u P r´1,1s X rx´ 2,xs i.e., for x P r´1,3s. We can then
decompose the problem:



2.2. Presentation of the model 7

• if x “´1, then u “´1 and f �gp´1q “ 1 and if x “ 3, then u “ 1 and f �gp1q “ 1,

• if x Ps0,2s, then f �gpxq “ 0,

• if x Ps´ 1,0s then f �gpxq “ f pxq,

• and finally if x Ps2,3r, then u Ps2´ x,1r and f �gpxq “ |2´ x|.

Taking in particular g in Definition 2.2.2 as gpuq “ 1
2µ ‖u‖

2
2 we obtain the Moreau envelope.

Definition 2.2.4. For a function f : X ÑRYt`8u, the Moreau envelope is:

M
µ
f pxq “min

uPX

"

f puq`
1

2µ
‖x´u‖22

*

, µě 0 . (2.4)

Note that the proximal operator is simply the solution to the Moreau envelope. And this envelope is simply a
lower, regularized, version of the function f . Thus it can be rewritten:

M
µ
f pxq “

"

u P X , f puq` 1
2µ
‖x´u‖22 “ f �

1
2µ
‖¨‖22 pxq

*

, µě 0 . (2.5)

Moreau’s envelope is the key of our minimization algorithms. Indeed, it is equivalent to minimize f
or M

µ
f . And it is possible to prove (Beck, 2017, chapter 6) that proxµf pxq “ x´µ∇M

µ
f pxqwhich is simply

a gradient step to minimize M
µ
f and thus f . Another key concept in optimization of non-differentiable

functions (such as the `1 norm present in the Elastic-Net) is the subdifferential.

Definition 2.2.5. Let f : X ÑRYt`8u be a real convex function. Then the subdifferential Bf is:

@x P dompf q Bf pxq “ tf ˚ P X˚, f puq ě f pxq` xf ˚,u´ xy @u P X u . (2.6)

For example, it is well known that the absolute function is not differentiable at the origin. But as we
can see in Figure 2.2,

B |x| “

$

’

’

&

’

’

%

´1, if x ă 0,

1, if x ą 0,

r´1,1s, else .

´1.5 ´1 ´0.5 0 0.5 1 1.5
´1

´0.5

0

0.5

1

1.5

x

y

|x|
subtangents at p0,0q

Figure 2.2: Visualization of the subtangents of the absolute value at p0,0q. The slopes of the subtangents
are in B |x||x“0

“ r´1,1s.
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2.2.2 Coordinate descent algorithm for differentiable functions

If we consider the minimization of a differentiable function f , Coordinate Descent optimization is a
possibility.

Algorithm 1: Coordinate Descent for a differentiable function F

Input : η ą 0 step-size, x “ pxiq
p
i“1 initial vector, ε ą 0 the tolerance

while stopping criterion ą ε do
For i “ 1, . . . ,p do

xi ÐÝ xi ´ η
BF
Bxi
pxq

Output : xi
Algorithm 1 performs a gradient descent step on each coordinate. So instead of minimizing every-

thing at once like we would with the gradient descent update:

βÐÝ β´ ηXJpXβ´ yq , (2.7)

it reduced our problem of dimension p to p problems of dimension 1. This strategy for the steps
direction is visible in Figure 2.3. In practice, the step size used is the squared `2 norm of each feature.

In the case of the least squares
∥∥∥y´Xβ∥∥∥2

2
, with X P Rnˆp, we update the ith coordinate of β with step

η ą 0 using Equation (2.8):

βi ÐÝ βi ´ ηx
J
i pXβ´ yq . (2.8)

As we will see in Section 2.2.3, proximal operators allow us to minimize our objective even if it is
defined by an `1 norm. Meaning that the principle of Coordinate descent, which is minimizing each
coordinate, can be kept.

Note that in Algorithm 1 we chose to update the coordinates cyclically. Other strategies exist, such as
a greedy implementation that will optimize the coordinate with the largest decrease. Some alternatives
also use random choices for the updates (Nesterov, 2012). One important detail is about the residuals
update. Equation (2.8) uses the residuals Xβ´ y to update the coordinate. Instead of recomputing the
residuals from scratch at each step, it is more efficient to see that between two iterates βnew and βold for
which j0 is updated:

Xβnew´ y “ Xβold ´ y´Xj0β
old
j0
`Xj0β

new
j0

.

So denoting rold and rnew the residuals associated to βold and βnew, it follows that

rnew “ rold ´Xj0pβ
old
j0
´ βnewj0

q . (2.9)

By doing so, an update with Coordinate Descent is made of two operations of complexity Opnq.

2.2.3 Proximal Gradient Descent algorithms

Where Coordinate Descent minimizes each coordinate at a time, the idea behind Proximal Gradient
Descent is to minimize them all at once. In a Least-Square problem with coefficients β with a convex
penalty function g, the Proximal Gradient Descent algorithm is:

Algorithm 2: Proximal Gradient Descent for X PRnˆp (regularized OLS)
Input : β “ 0p initial vector, ε ą 0 the tolerance

LÐÝ
‖XJX‖2

n // step size (see Section 3.2)
while stopping criterion ą ε do

For i “ 1, . . . , do
βÐÝ prox 1

L g

`

β´ 1
LnX

JpXβ´ yq
˘

Output : β
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The convergence rate is of course slower. However exploiting the architecture of the problem and
using the GPU can make Proximal Gradient Descent based methods competitive. One important dif-
ference in the computation is for the residuals. Since we update all coordinates at once, Equation (2.9)
will result in:

rnew “ rold ´Xpβold ´ βnewq , (2.10)

resulting in one Opnpq operation. Figure 2.3 shows that instead of having steps performed parallelly
with the axes, we can advance in diagonals (optimize multiple coordinates at once).
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Figure 2.3: Path of the iterates of PGD and CD to minimize the cost function in a LASSO problem with
a random matrix n“ 200 and p “ 2.

In our case, Problem (P ) is not to minimize a single function but a sum of convex functions with
two variables β and Θ. Using Proximal Gradient Descent (Beck, 2017) in alternating setting, we obtain
the following iterates for the kth step

βk`1 “ prox 1
LX
gp1q

ˆ

βk ´
1
LX

B

Bβ
f pβk ,Θkq

˙

, (2.11)

Θk`1 “ prox 1
LZ
gp2q

ˆ

Θk ´
1
LZ

B

BΘ
f pβk`1,Θkq

˙

, (2.12)

where LX and LZ are Lipschitz constants for the partial derivatives to be determined. We still need to
calculate the derivatives of f w.r.t. each component. Direct computation shows that:

Bf

Bβ
pβ,Θq “

1
n
XJpXβ`ZΘ´ yq and

Bf

BΘ
pβ,Θq “

1
n
ZJpXβ`ZΘ´ yq . (2.13)

Now we can compute the Lipschitz constants. For LX , let β1,β2 PR
p, we have∥∥∥∥∥ BBβ f pβ1,Θq´

B

Bβ
f pβ2,Θq

∥∥∥∥∥
2
“

1
n

∥∥∥XJpXβ1`ZΘ´ yq´X
JpXβ2`ZΘ´ yq

∥∥∥
2

“
1
n

∥∥∥XJXβ1´X
JXβ2

∥∥∥
2

ď
1
n

∥∥∥XJX∥∥∥
2

∥∥∥β1´ β2

∥∥∥
2
.
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This bound is the smallest possible. Let L1 ą 0 be another Lipschitz constant. Indeed, if we take β1 the
unit eigenvector associated to the largest eigenvalue of XJX and β2 “ 0p then:∥∥∥XJX∥∥∥

2
n

“

∥∥∥XJXβ1

∥∥∥
2

n

“
1
n

∥∥∥XJXβ1´X
JX0p

∥∥∥
2

ď L1
∥∥∥β1´ 0

∥∥∥
2
“ L1 .

We thus obtain that LX “
‖XJX‖2

n and with the same method LZ “
‖ZJZ‖2

n .

2.3 Calculating the proximal operator

With the Elastic-Net, the proximal operators allow us to minimize the objective even though the penalty
is not differentiable. We now need to compute this operator. For a function hpxq “ }x}1 `

γ
2 }x}

2
2, we

know (Parikh and Boyd, 2014, p. 189) that for µą 0:

proxµhpxq “
1

1`µγ
proxµ}¨}1pxq “

signpxq
1`µγ

p|x| ´µq` ,

where p¨q` “maxp¨,0q. With the penalty on β: gp1q (the second function gp2q is identical) we get

proxµgp1qpβq “ proxµλβ,`1hp1q
pβq “

signpβq
1`µλβ,`2

p|β| ´µλβ,`1
q` , (2.14)

with hp1qpβq “ }β}1`
λβ,`2{λβ,`1

2 }β}22 such that λβ,`1
hp1qpβq “ gp1qpβq.

Definition 2.3.1. We denote ST the soft-tresholding operator such that:

STpx,λq “ signpxqp|x| ´λq` “

$

’

’

&

’

’

%

x´λ if x ą λ,

x`λ if x ă´λ,

0 else .

´4

´2

2

4

´4 ´2 0 2 4 x

y
y “ x

y “ STpx,2q

Figure 2.4: Soft-thresholding applied with λ“ 2.

Updating β thus leads to:

βk`1 “
1

1` n
‖XJX‖2

λβ,`2

ST

˜

βk ´
n∥∥∥XJX∥∥∥ 1

n
XJpXβk `ZΘk ´ yq,

n∥∥∥XJX∥∥∥
2

λβ,`1

¸

. (2.15)
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For the update on Θ, considering

u “Θk ´
n∥∥∥ZJZ∥∥∥ 1

n
ZJpXβk`1`ZΘk ´ yq ,

the gradient step associated, is then:

Θk`1 “
1

1` n
‖ZJZ‖2

λΘ,`2

ST

˜

u,
n∥∥∥ZJZ∥∥∥

2

λΘ,`1

¸

. (2.16)

2.4 Cyclic Block Proximal Gradient (CBPG)

With the Proximal Gradient Descent, we update all of the coordinates of β and Θ at once. With Co-
ordinate Descent with interactions (Bascou, Lèbre, and Salmon, 2020), in each epoch we update each
coordinate separately. Some kind of compromise between the two algorithms is possible using the block
structure of the interaction matrix. Indeed, we can do block updates of Θ separately using the CBPG
method (Massias, 2019; Beck, 2017). Doing so, we need the expression of the derivative involved for
each block and the associated Lipschitz constants. Both can be retrieved using the same method as
before, so we get:

B

BΘBqpiq
f pβ,Θq “

1
n
ZJBqpiqpXβ`ZΘ´ yq , (2.17)∥∥∥∥∥∥ B

BΘBqpiq
f pβ,Θ1q´

B

BΘBqpiq
f pβ,Θ2q

∥∥∥∥∥∥
2

ď
1
n

∥∥∥ZJBqpiqZ∥∥∥
2

∥∥∥Θ1´Θ2

∥∥∥
2
. (2.18)

We denote Li “
1
n

∥∥∥∥ZJBqpiqZ∥∥∥∥
2

the Lipschitz constant associated to the update of the ith block. Notice

that the residuals needed in the gradient can be updated by block as in Equation (2.9) to reduce the
complexity.

Algorithm 3: Cyclic block proximal gradient for one epoch at iteration k ě 1

Input : X PRnˆp, y PRn

βk`1 “ prox 1
LX
gp1q

´

βk ´ 1
LX

B
Bβ f pβ

k ,Θkq

¯

,

For i “ 1, . . . ,p do

Θ
k`1
Bqpiq

“ prox 1
Li
gp2q

ˆ

Θk
Bqpiq

´ 1
Li

B
BΘBqpiq

f pβk`1,Θkq

˙

Output : β,Θ

2.5 Stopping criterion

Finding a stopping criterion for iterative solvers is not a trivial task. Necessary conditions for a point to
be optimal exist such as the Karush-Kuhn-Tucker (KKT) conditions. For an objective f penalized with
mą 0 inequality constraints hi , i “ 1, . . . ,m the minimization problem writes:

min
x
f pxq s.t. hipxq ď 0, i “ 1, . . . ,m .

This can be rewritten as minimizing the following Lagrangian function with µ1, . . . ,µm PR:

Lpx,µ1, . . . ,µmq “ f pxq`
m∑
i“1

µihipxq .

Proposition 2.5.1. The KKT conditions state that at the optimum x˚

1. 0 P Bf px˚q`
∑m
i“1µiBhipx

˚q (stationarity),
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2. @i P rms, µihipx˚q “ 0 (complementary slackness),

3. @i P rms, µi ą 0 and hipx˚q ď 0 (feasibility).

To stop our solvers, we can look at how much we violate these conditions. Simplifying the lines
hereafter, let us consider an Elastic-Net problem with W PRnˆp:

argmin
wPRp

1
2n
}y´Ww}22`λ1}w}1`

λ2

2
}w}22 “ argminFenetpwq . (Penet)

KKT conditions dictate that at the optimum w˚:

0 PWJpWw˚´ yq`λ2w
˚`λ1B

∥∥∥w˚∥∥∥
1
.

For the primal pPenetq, we stop when current iterate w is such that d}¨}p0,BFenetpwqq ď ε for ε ą 0.
This means that we are at most violating the KKT conditions by ε for the considered norm. Since the
subdifferential is a set, the distance considered is the distance of a vector to a set. For a vector u P Rn

and a set E ĂR
n it means:

d‖¨‖pu,Eq “ inf
vPE
‖u´ v‖ .

We will consider the8-norm to have all coordinates below ε in absolute value:

inf
hPBFenetpwq

}h}8 ď ε . (2.19)

We can consider the problem coordinate-wise as we will take the maximum over the coordinates. If
h P BFenetpwq then for j P rps,

hj P
1
n
WJ
j pWw´ yq`λ1B|¨|pwjq`λ2wj .

The distance for each coordinate we want to compute is then:

dp0,BFenetpwqjq “ d
ˆ

0,
1
n
WJ
j pWw´ yq`λ1B|¨|pwjq`λ2wj

˙

“ d

ˆ

´
1
n
WJ
j pWw´ yq´λ2wj ,λ1B|¨|pwjq

˙

.

Denoting r “ y´Ww the residuals, we get:

d

ˆ

1
n
WJ
j r ´λ2wj ,λ1B|¨|phjq

˙

“ inf
ηjPB|¨|phjq

1
n

ˇ

ˇ

ˇ
WJ
j r ´nλ2wj ´nλ1ηj

ˇ

ˇ

ˇ

“
1
n

ˇ

ˇ

ˇ
ST

´

WJ
j r ´nλ2wj ,nλ1

¯
ˇ

ˇ

ˇ
. (2.20)

We can stop the solver when the maximum value for j P rps of Equation (2.20) is below ε1. This
strategy can be applied to our interaction problem considering that W “ rX |Zs and w “ rβ |Θs. Equa-
tion (2.20) then writes as:

dp0,BFenetpwqjq “
1
n

ˇ

ˇ

ˇ
ST

´

WJ
j r ´nrλβ,`2

1pj ď pq`λΘ,`2
1pj ą pqswj ,nrλβ,`1

1pj ď pq`λΘ,`1
1pj ą pqs

¯
ˇ

ˇ

ˇ
.

(2.21)

1see Appendix A for convergence rates results.
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2.5.1 Reformulating the criterion from a LASSO perspective

Since the Elastic-Net can be rewritten as a LASSO problem, Equation (2.20) can also be derived from
the KKT violation. Indeed, we have:

1
2n

∥∥∥y´Ww
∥∥∥2

2
`λ1}w}1`

λ2

2
}w}22 “

1
2n

∥∥∥y´Ww
∥∥∥2

2
`λ1}w}1`

p∑
j“1

˜

a

λ2

2
wj

¸2

“
1

2n

»

–

∥∥∥y´Ww
∥∥∥2

2
`

p∑
j“1

´

a

λ2nwj
¯2

fi

fl`λ1}w}1

“
1

2n

∥∥∥ry´ĂWw
∥∥∥2

2
`λ1}w}1 ,

with ĂW “

„

W
a

λ2nIdpˆp



PRpn`pqˆp and ry “ ry |0psJ PRpn`pqˆp. Equation (2.19) renders as:

max
jPrps

1
n

ˇ

ˇ

ˇ
ST

´

ĂWJ
j rr,nλ1

¯ˇ

ˇ

ˇ
ď ε . (2.22)

Working with interactions, Problem (P ) can be rewritten as a weighted LASSO objective:

min
β,Θ

1
2n
}ry´ rXβ´ rZΘ}22`λβ,`1

∥∥∥β∥∥∥
1
`λΘ,`1 ‖Θ‖1 ,

with

ry “ ry |0p |0qs
J PRn`p`q, rX “

»

—

–

X
b

λβ,`2
nIdpˆp
0

fi

ffi

fl

PRpn`p`qqˆp and rZ “

»

–

Z
0

a

λΘ,`2
nIdqˆq

fi

fl PRpn`p`qqˆq .

To recover a weighted-LASSO, we concatenate both matrices. We denote ĂW “ r rX | rZs, rw “ rβ |Θs, and
λ“ rλβ,`1

1p|λΘ,`1
1qs, with 1p the vector of ones of dimension p. Problem Equation (P ) renders as:

argmin
rwPRp`q

1
2n
}y´ĂW rw}22`

p`q∑
j“1

λj
ˇ

ˇ

rwj
ˇ

ˇ .

This leads to Equation (2.21) with a LASSO problem. We can stop the solver when:

max
jPrp`qs

1
n

ˇ

ˇ

ˇ
ST

´

ĂWJ
j rr,nλj

¯
ˇ

ˇ

ˇ
ď ε .

2.6 Pipeline and discussion about the algorithm used

2.6.1 Main steps for the Cyclic Block pipeline

Here, we synthetize the pipeline for the Cyclic Block Proximal Gradient algorithm. In Chapter 3, we
will see how in practice we can use this algorithm, especially the computation of the steps and how it
performs on datasets.

The values in µX , σX , µZ and σZ can be stored once and reused later by the solver. So there we can
also not clone the data at the beginning. This implies keeping the non-standardized data during the
run and standardize on-the-fly when a matrix-vector product is computed. The same applies to the
Lipschitz constants that can be reused if different regularizations are tested (like in a grid search).

The cost of the KKT criterion is also very low because in Equation (2.21), we only need the residuals.
Those are already computed so we do not need to recompute them. So the most costly operations are
the products with XJ and ZJ respectively in Opnpq and Opnqq.
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X PRnˆp

Clone: rXÐ X Standardize: XÐ X´µX
σX

Compute µZ and σZ

so ZBqpjq “
rXjdrX~j,:�´µZBqpjq

σZBqpjq

Apply algorithm 5 to compute:

LX, LZ and LZBqpiq, i “ 1, . . . ,p

preprocessing

While KKT criterion ą ε

PGD step to update β

Update each block of Θ consecutively.

2.6.2 Discussion of using PGD/CBPG instead of CD

As an example, we can consider the usual LASSO problem (as the Elastic-Net is just an extension of the
LASSO as we saw in Section 2.5.1). We benchmark the convergence of the objective function for CD
and PGD methods, with and without acceleration in Figure 2.5.

Figure 2.5: Suboptimality curves of CD and PGD to solve a simulated LASSO problem of 100 samples
and 5000 features. We also compare with the solver from Scikit-learn (which is CD-based). The
`1 penalty is set to 0.1. The parameter ρ controls cross-correlations: for features i and j, the cross-
correlation is Ci,j “ ρ|i´j|. Note that no GPU was used.
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Figure 2.5 was made with the BenchOpt library2. As we can clearly see, PGD methods converge
slowly, and even slower without inertial acceleration. Hereafter, the acceleration considered is Nesterov
inertial acceleration (Nesterov, 1983). This takes into account with a specific weight the previous iterate
value.

So trying to compete with CD is neither easy nor manageable with CPUs. And if GPUs can, not nec-
essarily beat CD, but only become a possible contestant, then maybe other good statistical algorithms
judged too time consuming could be used again. Not only old methods, new methods may be even
faster using GPUs.

2see https://benchopt.github.io/ for the main page, https://benchopt.github.io/results for the results visualization
(interactive with Plotly!) and Chapter 5 for more.

https://benchopt.github.io/
https://benchopt.github.io/results




3Parallel numerical scheme for linear models with
interactions

3.1 Handle memory issues with the interaction matrix

In the linear model with interactions, we need to build aforementioned interactions. We store them in
the matrix Z P R

nˆq, with q “ Opp2q. For large numbers of features p, it quickly becomes problem-
atic to store this data. We thus consider a block approach that will only need to store a nˆ p matrix
upmost at a time. Indeed, we can decompose Z into element-wise products with slices of X: Z “
“

Xd x1|X~2,p�d x2| ¨ ¨ ¨ |X~p,p�d xp
‰

“

”

ZBqp1q| ¨ ¨ ¨ |ZBqppq
ı

. So the product of Z by a vector Θ PRppp`1q{2 is:

ZΘ “
”

ZBqp1qΘBqp1q` ¨¨ ¨`ZBqppqΘBqppq
ı

.

The first sum is a product with an nˆp matrix, the second sum is with a nˆpp´1qmatrix, and so on
until the last which is with a nˆ 1 matrix. Each block is computed efficiently using CUDA acceleration.

For the product ZJξ, ξ PRn (used in the gradient step), we can also divide the blocks along the axis
of size q. Here, we sum over the axis of size n which is quite large. We can divide it to handle smaller
reductions (see Figure 3.1).

Figure 3.1: Matrix-vector product for ZJ where K should be big enough to avoid any error but also
small enough to keep the power of a matrix product.

And for each row, the kth sub-block, 1ď k ď K is computed as follows (here for the first main row):

k “

„

pZBqp1qq
J
~nk ,nk`1�

ξ~nk ,nk`1�



.

For the jth main row, the first line uses the coefficients from xj d xj but the last line always uses those
from xj d xp. Each sub-block k is of size nk (for example the quotient of n by k, ˘1 to reach n at the
end).

Remark Having an efficient memory management is very important when working with GPUs. There
is very fewer available storage on a GPU than on a CPU. Let us take as reference the NVIDIA GeForce
RTX2080 (a standard graphical card that was used for the followings experiments). The data can be
stored in arrays (or tensor) of different types. If stored with float-32, each element has a memory
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footprint of 4 bytes. In float-64, it is 8 bytes. The buffer memory of the GPU has 8GB available. So for
a float-32 tensor of size nˆ p, we need

4np ď 8ˆ 109 ùñ
?
np ď 4.5ˆ 104 .

And more generally considering the variance accross GPUs (especially their date of release), we should
have

?
np P r10000,50000s. So the genomics data on which we will apply our methods (see Chapter 4)

generates a matrix Z of size 20000ˆ 141246 that does not fit.

Recall that the algorithm we are trying to compete with (Bascou, Lèbre, and Salmon, 2020) uses
the Numba library to compile and accelerate the code. Now that we know how to make a matrix-vector
product with the matrix Z, is there a chance that, using GPU acceleration, we can perform operations
faster than Numba? To see the time consumption of products of Z with an array for different sizes, we
used the data from Chapter 4 with more than 19900 samples and a large number of features available.
We vary the number of features from X and compute a product with the matrix Z created on-the-
fly. We test it for Numba with a double loop (the way it is implemented in the CD solver to update each
coordinate). We compare it with PyTorch using blocks (implemented for PGD/CBPG) with and without
CUDA to check that there is indeed an interest to perform these operations with a GPU. Also, because
in the algorithms we use both products with Z and ZJ and the dimensions can be very different, we
propose to monitor both. Each operation has been repeated 20 times.
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(a) Product with the matrix Z.
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(b) Product with the matrix ZJ.

Figure 3.2: Comparison on a genomics dataset of the median time to perform matrix vector products
with the interaction matrix over 20 repetitions.

Figure 3.2 shows us that indeed the time performance of matrix vector products with CUDA as back-
end are performed way faster as the number of features considered increases. So can we actually in-
crease the performance of Proximal Gradient type descent algorithms this way? To answer this ques-
tion, we still need some important bricks to our foundations. One of them being: at each step we want
to move towards the solution: but how do we choose the step size?

3.2 Step-size for the interaction matrix

One element needed for methods like PGD and CBPG is the computation of the step size. Essentially,
we need to be able to compute or have a good upper bound for

∥∥∥ZJZ∥∥∥
2

or for a fixed i ď p,
∥∥∥ZJBqpiqZ∥∥∥

2
.

To do so, several methods are available. Below we present the one used. We compare the upper bounds
obtained with different methods.

First in the PGD, for
∥∥∥ZJZ∥∥∥

2
, we could simply use the power method (Algorithm 4, Golub and

Van der Vorst, 2000) to get the exact value. This algorithm iterates through what is called the Krylov
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subspace of the matrix A and an associated vector v1. More formally, we denote the Krylov subspace of
dimension j PN˚ KjpA,v1q and define it as:

KjpA,v1q “
!

v1,Av1, . . . ,A
j´1v1

)

.

Algorithm 4: Power method on a matrix A

Input : A PRnˆn, m number of iterations
v1 random unit vector
For j “ 1, . . . ,m´ 1 do

vj`1 ÐÝ Avj // visit a new direction

vj`1 ÐÝ
vj`1

‖vj`1‖ // normalize the output

Output : vm
However, using this method on CBPG with p blocks becomes very costly (especially considering

that ZJBqpiqZ is not squared so we have to apply the power method on ZJZBqpiqZ
J
Bqpiq

Z). An alternative

is to consider not the exact value but an upper bound with reasonable computation cost. Such a bound
could be computed from the consistency of the operator norm, i.e.,

∥∥∥ZJBqpiqZ∥∥∥
2
ď

∥∥∥ZBqpiq∥∥∥2

∥∥∥Z∥∥∥
2
.
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(a) p “ 150 and n“ 100 on simulated dataset from the
make regression function of Scikit-learn.
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(b) p “ 531 and n“ 19393 on a genomics dataset (see
Chapter 4)

Figure 3.3: Comparison of upper bounds on two datasets for
∥∥∥∥ZJBqpiqZ∥∥∥∥

2
.

As we see in Figure 3.3, the upper bound produced can lead to quite far results. Those could imply
very slow convergence (see Figure 3.4). Contrary to the power method, it is actually very fast to compute
an upper bound using the Cauchy-Schwarz inequality. So it is reasonable for some situations to explain
how to compute it.

For the next part, recall that Z P Rnˆq and ZBqpiq P R
nˆpi . For any matrix K “ pkijqi,j P Rn1ˆn2 , we

have (Vandebril, Van Barel, and Mastronardi, 2007, p. 27):

‖K‖2 ď
?
n1n2 max

i,j
|kij | . (3.1)

Applying (3.1) to K “ ZJBqpiqZ, for each 1ď i ď p, we could compute K by blocks and get the maximum

component each time. But we can even go faster using Cauchy-Schwarz inequality. Indeed, we want
to perform our algorithms on the standardized matrix Z. So for any i, K is only a subset of the Gram
matrix made from Z. Thus for l P rpis and m P rqs:

|klm| “
ˇ

ˇ

ˇ

A

Zτqpi,lq |zm
E
ˇ

ˇ

ˇ
ď

∥∥∥Zτqpi,lq∥∥∥2

∥∥∥zm∥∥∥
2
ď n ,

because with a standardized matrix Z, ‖zm‖22 “ nV arpzmq “ n. And this bound is reached when τqpi, lq “
m, so for each block ZBqpiq, we have: ∥∥∥∥ZJBqpiqZ∥∥∥∥

2
ď n

?
qpi .
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Figure 3.4: Importance of the step size for ridge regularization (Numpy with float64 precision with
λ “ 0.1) on the Leukemia dataset (n “ 72, p “ 7130). L is the Lipschitz constant ‖XJX‖2{n. The linear
convergence rate (see Proposition A.2.1) is obtained with steps near L´1. Smaller steps lead to Op1{kq
convergence rates.

The goal now is to improve the time consumption of the estimation of the largest singular value
without losing too much in precision. We can indeed do better (see Figure 3.5) than the power method
using the Lánczos algorithm (Lánczos, 1952) without diminishing the precision. The core idea is quite
simple. Where the power method iterates through the Krylov space and only keeps the last iterate to
generate a new direction, Lánczos uses more deeply the Krylov space exploration made in all the past
iterations. Note that this is not a method to directly compute the largest eigenvalue, but more generally
it is a way to approximate all of the extreme eigenvalues of a (potentially very large) hermitian matrix
by considering a smaller matrix T . We have the relation

T “ V ˚HV ,

thus if x is an eigenvector of a matrix H , then V x is an eigenvector of T for the same eigenvalue, where
V and T are constructed by Lánczos method.

Algorithm 5: Lánczos algorithm on an hermitian matrix H

Input : H PRnˆn, m dimension of the Krylov subspace visited
v1 random unit vector
For j “ 1, . . . ,m´ 1 do

wj`1 ÐÝHvj // visit a new direction
tk,j ÐÝ xvk ,wj`1y, k “ 1, . . . , j

wj`1 ÐÝ wj`1´
∑j
k“1 tk,jvk // orthogonalization

tj`1,j ÐÝ }wj`1}2

vj`1 ÐÝ
wj`1
tj`1,j

Output : T

Algorithm 5 is quite general but shows that the basis fot this method is indeed the power method,
slightly modified. In the case of H hermitian, it is possible to show that T is a tridiagonal matrix.
Because it is an important result but not trivial just by looking at Algorithm 5, let us reprove it quickly
by induction.

Lemma 3.2.1. The basis generated by the columns of V : pv1, . . . , vmqm is orthonormal.

Proof. The proof of this result can be written by induction. Note that the fact that the columns of V
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have unit norm is simply the last line of the algorithm. Let v1 PR
n be a unit vector. Then:

xv2,v1y “

B

w2

‖w2‖2
,v1

F

“
1
‖w2‖2

xHv1´xv1,Hv1yv1,v1y

“
1
‖w2‖2

xHv1,v1y´
1
‖w2‖2

xv1,Hv1y‖v1‖22
l jh n
“1

“ 0 .

If pv1, . . . , vjqjPN˚ is an orthonormal basis, then for i P rjs,

xvj`1,viy “
1∥∥∥wj`1

∥∥∥
2

C

Hvj ´

j∑
k“1

xvk ,Hvjyvk ,vi

G

“
1∥∥∥wj`1

∥∥∥
2

»

–

@

Hvj ,vi
D

´

j∑
k“1

xvk ,Hvjyxvk ,viy

fi

fl .

Finally, we only need to notice that xvi ,vky “ ‖vi‖22 “ 1 if i “ k and 0 o.w. using to the induction hypoth-
esis. Thus

∥∥∥wj`1

∥∥∥
2
xvj`1,viy “ xHvj ,viy´xvi ,Hvjy “ 0. So the columns of V form an orthonormal basis

of a subspace of the Krylov subspace.

To finalize, because we are in the Krylov subspace, the following relation is of course verified:

@i ă j ´ 1,Dα1, . . . ,αk PR, Hvi “

j´1∑
k“1

αkvk .

Thus, using Lemma 3.2.1

ti,j “ xvi ,wj`1y “ 0, |i| ă j ´ 1,

tj´1,j “ xvj´1,wj`1y “ v
J
j´1Hvj “ v

J
j H

Jvj´1 “ xvj ,wjy “ tj,j´1 .

We simulate using standard gaussians X P R
nˆp and consider H “ XJX. We compare the time and
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Figure 3.5: Comparison of the linalg module of Pytorch, the power method and Lánczos algorithms to
get the largest singular value of an hermitian matrix with n“ 20000 and 500 features. With same time
performances Lánczos is much more precise faster.

precision for the power method, Lánczos algorithm and linalg module of PyTorch to get }T }2. We
consider several number of iterations for the power method, and visit a subspace of same dimension
with Lánczos method.
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3.3 Data types and GPU

For our solvers, the CD method uses Numba with Numpy as backend. Other solvers use Pytorch with
CUDA enabled. The steps are computed using the Lánczos method and after applying linalg function
on the matrix T , with a subspace of dimension 20.
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(a) KKT violation criterion with CUDA vs no CUDA
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ples and 500 features.
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Figure 3.6: Comparison of data types and motivation to use CUDA acceleration.

One can always wonder if there is an interest about using a more complex architecture such as
GPUs in this framework. To test that, we simulated a dataset with n “ 20000, p “ 500. We look at the
difference between using CUDA or stay purely on CPU for the PGD and CBPG methods. It is clear from
Figure 3.6a that, when working with these solvers, using GPU acceleration lead to results available in
much fewer time.

It is also well known and documented by libraries (Paszke et al., 2019) that GPUs should be used
with float32 precision for better performance. However, our methods can accumulate some rounding
errors that are amplified. Figure 3.6b shows the time-precision trade-off we need to choose from in our
computation. As a side-note, it should be noted that to this day in Numba when accessing one coefficient
from a Numpy array the type can be lost. If the original array is in 32-precision, the accessed values are
casted to 64-precision internally because of CPython.

3.4 Application to simulated dataset

Simulated dataset entries are made from Gaussian variables. On KKT criterion curves, if two consecu-
tive values are close, then we stop the solver. The signal to noise ratio is fixed. For a random centered
gaussian noise ε of variance σ2 and a target y, we use:

SNR“
varpyq
σ2 .

We also need to choose the penalties. For that, let us first look at a upper bound in our search.

Definition 3.4.1. For the `1 penalties, we denote λmax ą 0 the regularization such that

@λą λmax, β “ 0p and Θ “ 0q . (3.2)

It can be derived from the LASSO (see Section 2.5.1 and (Fercoq, Gramfort, and Salmon, 2015)) that

λmax “max

˜

∥∥∥XJy∥∥∥
8

n
,

∥∥∥ZJy∥∥∥
8

n

¸

. (3.3)
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When a specific `1 ratio is used (meaning the `1 penalty is α`1ratio
and the `2 penalty is αp1´ `1ratio

q,

α ą 0), then λratio
max “

λmax
α .
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Figure 3.7: KKT criterion curves on the simulated regression dataset with n “ 20000 and p “ 500,
q “ ppp`1q{2. Maximum number of epochs is set to 100. Float types are 32-bytes.

For now, we chose to use a simulated regression dataset with p “ 500 features and n “ 20000. We
also fixed the signal to noise ratio to 10. We denote the regularizations λmax as the maximum between
λΘ,`1

and λβ,`1
(» 843.228).

As we see in Figure 3.7a, Coordinate Descent is still faster for high penalties. But decreasing the
regularizations to λmax{100 with the same signal to noise ratio leads to methods on GPU being equal
or faster than coordinate descent. These simulations were made with a sparsity in β and Θ of 25%
(meaning 25% of the coefficients were active). We wondered how sparser solutions could affect the
solvers.
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Figure 3.8: KKT criterion curves on the simulated regression dataset with n “ 20000, p “ 500 Sparsity
levels are set at 1% in β and Θ. The SNR “ 10, regularizations are set to λmax

100 , Float-32 types are used
and 100 epochs are allowed.

With very sparse solutions, Figure 3.8 shows that Coordinate Descent methods have more advan-
tages and lead over PGD. Here however CBPG methods are still better. We can wonder if dividing
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regularizations by such factors are realistic (especially since we set the sparsity level to 1% in our simu-
lated dataset). To investigate that we traced the surface plot of the sparsity level obtained in the vector
Θ (very large) against the regularizations. Figure 3.9 simply illustrates on an application how impor-
tant the choice of the LASSO penalty in the Elastic-Net is to get a good sparsity level in the estimated
coefficients. We denote nnzpΘq “ #tj P rqs : Θj , 0u. The higher the `1 penalty, the sparser the solution
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Figure 3.9: Sparsity obtained in Θ with n “ 20000, p “ 500, SNR “ 10, sparsity level simulated of 1%
in β and Θ, Float-32 types and 100 epochs allowed.

is and on datasets with p large, we want very sparse solutions. For example, even having 1% of non
zero values for p “ 500 means around 1252 active features in the interactions, which in practice is still
a lot and too difficult to interpret.

We see that our GPU-accelerated methods are faster with smaller regularizations and might seem
not very useful, albeit it is not often that we know per advance the right regularization to choose from.
In most cases, a set (or grid) of parameters is given to our method, we look at the obtained Mean Squared
Error (or any other criterion) and select the regularization that lead to the best performance. The key
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(a) Time consumption with varying `1 penalty.
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Figure 3.10: On simulated regression dataset with n “ 20000 and p “ 500, q “ ppp`1q
2 . `1 penalty is

λmax{`1factor. Maximum number of epochs is set to 500 but solvers stop if the criterion is achieved. Float
types are 32-bytes. KKT criterion is set to 10´3. SNR is set to 10. Sparsity levels are at 1%.

hypothesis is that we might not have any prior idea about the location of the best parameters. In this
situation, one can choose a grid search of λmax{`1 factor for the `1 regularization. Let us use λ`2

“
λmax

10
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and see for varying `1 regularizations the time spent and the MSE obtained. Also, doing so we don’t
need to compute each time the Lipschitz constants of all the blocks in the Cyclic Block method, they
are computed for one run and the next ones can reuse them.

As we see in Figure 3.10b all our errors are close. And with Figure 3.10a we see the three situations
we encountered before. Around a division of λmax by 10 and before, CD is faster. After that CD is
better than PGD-type methods but not CBPGs. And then it needs to search even longer. Note that in
this experiment, only PGD methods did not reach the ε “ 10´3 precision in the 500 epochs allowed for
the last regularizations. Hence the flattening curve meaning we only see the time it takes to make the
maximum number of epochs. And although it appears the MSE curve is strictly decreasing, in fact the
MSE for the last regularization is higher than the one for the penultimate’s.

With warmstart and residuals recomputation We describe in Section 4.2 ways to reach lower preci-
sion. The warmstart uses solutions from one penalty to be injected as first guess for the next penalty.
Using a `1 ratio of 0.9 we can, on simulated data, compute a path and compare times to reach a precision
of 10´4 (see Figure 3.11).

Table 3.1: Non zero values in β and Θ from the simulate experiment of Figure 3.11. Both methods lead
to the same results. The `1 ratio is set to 0.9. Higher values of α lead to λβ,`1

and λΘ,`1
larger and result

to fewer features selected.

α 851.7 516.1 312.6 189.4 114.8 69.5 42.1 25.5 15.5 9.4
nnzpβq 1 4 5 5 5 5 22 53 93 124
nnzpΘq 0 0 0 0 89 706 5068 13899 22844 29767

Both solvers keep the same number of non zeros coefficients (see Table 3.1) and result to the same
MSE. We could also consider different values for the `1 ratio and more values of α in the grid to select
the penalties resulting with the least MSE on the test set.

Figure 3.11: Use of the recomputation of the residuals on simulated dataset with a `1 ratio of 0.9,
n“ 20000, p “ 500 (15000 samples for the train phase and the rest for the test), 1% of non zero values
in the coefficients vectors and solvers are stopped when the KKT criterion reaches 10´4. The `1 penalty
is α`1ratio with 10 values of α P rλmax{100,λmax{1.1s log-spaced (consider λmax as upper bound would
lead to zero-filled vectors which is not interesting).

Note that in this situation, for the last penalty (α “ 10´2λmax) which is the hardest to compute,
both solvers converged. Coordinate Descent reached 10´4 precision in 21 epochs, and Coordinate
Block Gradient Descent in 57 epochs. So more than twice the number of epochs, only each one is done
faster thanks to the GPU so in fine and counterintuitively, the method doing more epochs is faster.





4Application to genomics dataset

4.1 Data presentation

As a real high-dimensional dataset, we used a genomics dataset (Bessière et al., 2018). It has a sample
size of n“ 19393 and p “ 531 features. This means that the matrix Z would have 141246 features, i.e.,
way too many to handle directly. The n samples each represent a gene. We chose the first response of
the dataset to work, meaning one patient. The goal of this data is to identify the active regions for the
expression of different genes. The predictive features are:

• 20 nucleotides/dinucleotides for the Core region promoter,

• 20 nucleotides/dinucleotides for the DU region promoter (Distal Upstream),

• 20 nucleotides/dinucleotides for the DD region promoter (Distal Downstream),

• 471 motif scores computed from the Core region (JASPAR 2016 PWM scores).

Definition 4.1.1. The Position Weight Matrix (PWM) for nucleotide is a matrix with rows A,T ,C and G.
In each column (position) we count the number of nucleotides of each type present from our samples and from
there compute the probability distributions by dividing by the total number.

The features from the three regions represent the percentages of nucleotide in the sequences divided
by the length of the sequence. The motives scores are computed as the sum over a motif w of the log of:

Ppsi`j |wjq

Ppsi`jq
,

where the numerator is the probability for the nucleotide at position i ` j of a sequence s to be in
position j of the motif w. The maximum is taken over the sequence. This is computed from the PWM
(see Section 4.1.2).

4.1.1 Crash course in biology

To understand a little more the idea of the importance of the data considered, and why feature selection
is necessary, we need to go back and understand the biological phenomenon measured. This is in fact
linked very closely to the process of going from the double helix shaped DNA gene to the protein. This
process is visualized in Figure 4.1.

A gene is composed of nucleotide sequences. Very simplified, it is made of a promoter region,
followed by exon and introns regions. The promoter is where the transcription is initiated, it controls
how the gene is expressed. Its Core region is known to be the one to put in place the transcription
factors while distal regions are regulatory elements mainly. During the transcription, an helix is copied
from the DNA to make the RNA from the introns and exons. After that, the maturation of the RNA
to mRNA removes the introns. This is made in two step with the pre-mRNA to only keep the regions
needed (exons) and translate some regions. From there, we go to the cytoplasm of the cell to execute
the translation. This is where the ribosome reads the mRNA codons (groups of three nucleotides) until
reaching a ”stop codon” and forms the associated amino acid chain. The amino acid elements are linked
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with peptic bounds. From there, post translational modifications are made to reach the protein, but the
polypeptic chain is the main resource for that.

Figure 4.1: From the DNA to the protein: transcription and traduction steps. Note that in the RNA, the
uracile replaces the thymine.

Our response variable is the gene expression. Quantifying it means counting the number of corre-
sponding messenger RNA inside the cytoplasm. So technically it should be in N. However, to make it a
little more Gaussian-like, a log transformation was applied to the measurements. Of course, since there
were zeros inside the original counts, the logarithm was not applied directly but to an ε ą 0 translated
quantity. This creates a bimodal distribution (see Figure 4.2) instead of the unimodal Gaussian.
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Figure 4.2: Distribution of the gene expression for the first patient. The first peak corresponds to the
shift of ε to avoid ´8 values in the log.

4.1.2 Construction example for the PWM

Say we have 6 individuals with the followings nucleotide sequences:

Table 4.1: Example of imagined sequences of nucleotide available

sample number 1 2 3 4 5 6
motif AATCG ACTCC ATGGC TCGCA TAAGC ATCCG

Then the PWM is simply (with ATCG as rows from top to bottom):

PWM “

»

—

—

—

—

–

7tA in first placeu
6

7tA in second placeu
6

7tA in third placeu
6

7tA in fourth placeu
6

7tA in fifth placeu
6

7tT in first placeu
6

7tT in second placeu
6

7tT in third placeu
6

7tT in fourth placeu
6

7tT in fifth placeu
6

7tC in first placeu
6

7tC in second placeu
6

7tC in third placeu
6

7tC in fourth placeu
6

7tC in fifth placeu
6

7tG in first placeu
6

7tG in second placeu
6

7tG in third placeu
6

7tG in fourth placeu
6

7tG in fifth placeu
6

fi

ffi

ffi

ffi

ffi

fl

»

»

—

—

–

4{6» 0.67 2{6» 0.33 1{6» 0.17 0 1{6» 0.17
0.33 0.33 0.33 0 0

0 0.33 0.17 0.67 0.5
0 0 0.33 0.33 0.33

fi

ffi

ffi

fl

.

From there, then a posteriori,

PpACCGA |wq “ PptA in first placeu |PWMqˆPptC in second placeu |PWMq . . .PptA in fifth placeu |PWMq

» 0.67ˆ 0.33ˆ 0.17ˆ 0.33ˆ 0.17 .

4.1.3 Numerical stability

With small visualizations, we can already foresee the issues we will face and discuss more in Sec-
tion 4.1.3. For example, we can look at a kernel density estimation of the distribution of the first five
features of our data and their joined distribution.
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Figure 4.3: Estimated densities and joined densities of the first five features in Core region.

Figure 4.3 already shows us highly correlated features. However, we also notice that the features are
unimodal, bell-shaped distributed. With Figure 4.6 we will see that it is not only a phenomenon on the
first features but on the all first 60 features (the three regions). For the PMW scores, with Figure 4.4 we
see that they are mainly close to one, mostly because what is used is the max of the sum of logs. This
property is verified along all the 471 features.

We apply the usual way to preprocess the data X P R
nˆp for a dataset: the standardization from

Equation (4.1):

X´µ

σ
, (4.1)

with µ and σ the mean and standard-deviation of X. We can look at the numerical stability of our data
after standardization. One way to measure this is to consider the condition number of the data.

Definition 4.1.2. The condition number of a rectangular matrix A denoted κpAq is:

κpAq “
∥∥∥A∥∥∥∥∥∥A`∥∥∥ ,
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Figure 4.4: Boxplot with the 10 quantiles of the features 80 to 90 (motif scores).

where A` is the pseudo-inverse of A. Using the 2´norm,

κpAq “
σmax

σmin
,

the ratio of the largest and smallest singular values.

With simulated aforementioned data from Gaussian distributions, κpXq » 1.7 which is a very good
condition number as the best possible is κpIdq “ 1. And all the condition numbers of the blocks of the
associated matrix were below 2. With Figure 4.5 we can look at the condition number of each block of
the matrix Z for the genomics dataset. And for the first 60 blocks it is way too big.
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Figure 4.5: Condition number of the blocks of the interaction matrix with genomics data.

In fact, it is not even precise to talk about 1015 as a condition number for ZBqp1q as σmin ă 10´20 so
we have already reached (by far) the zero-machine precision. If the smallest singular value is so close
to zero, then the columns are almost linearly dependant. Figure 4.6 represents the Gram matrix of the
genomics dataset, Σ“ XJX{n. As we can see, the first 60 features have indeed a different behaviour and
there are some very highly correlated features (in absolute value). This alone justifies the use of the
Elastic-Net, the `2 norm being used as a regulator.
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Figure 4.6: Gram matrices of the genomics dataset.

4.2 Running solvers on the genomics dataset

When working with such data, it is not possible to consider one set of penalties directly. So what we
need to look at is the time taken to complete a whole path. And it is interesting to consider different
values of ε ą 0 as stopping values for Equation (2.19), the KKT criterion. There are also two new
elements to consider:

• because we are working with a path, we can consider to use warm starts. Meaning that the path is
computed from the largest `1 penalty to the smallest. And when starting to solve the problem with
the next penalty, instead of starting from the zero-solution, we can use the solution we previously
ended up with.

• to help with numerical stability on the GPU methods, we recompute every 100 epochs the resid-
uals r “ Xβ`ZΘ´y. This is done for the first penalty only (to have a solver that converged when
the warm start is tried in the accelerated version) or for all the penalties o.w..
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Figure 4.7: Barplot of the ratio of time taken to compute a full path w.r.t. vanilla CD method for
different precision. We use the KKT criterion on the genomics dataset. As `1 penalty, 10 log-spaced
values on a grid from λmax to λmax{100 are used. The `2 penalty is set to 20λ`1,max. All solvers reached
convergence criterion.

Figure 4.7 shows that CD methods are quick to find where to go to reach the 10´2 precision. How-
ever as the ε becomes smaller, CBPG based methods perform better. It is worth noticing that using a
warm start and recompute residuals for all penalties lead to the same performance results. So the prox-
imal gradient descent based algorithms with GPU can indeed become competitive against Coordinate
Descent.



5The BenchOpt library

Throughout this report, multiple benchmarks were executed, with different datasets, solvers and pa-
rameters. As a general rule, scientific results should be reproducible, but in practice, this can become
quite tideous and very time consuming. This is where BenchOpt can help.

https://benchopt.github.io/

Created by Thomas Moreau1, Alexandre Gramfort2, Joseph Salmon3, Tom Dupré la Tour4 and Math-
urin Massias5, this Python library enables the users to easily compare cross-languages optimization
solvers and with easy reproducibility. In practice, we already saw an example with Figure 2.5 of what
this library can produce. And how it works is quite simple if we look at what is an optimization prob-
lem. Indeed, it is made of (at least) three components:

‚ an objective to minimize,

‚ a solver that will run until a criterion stops it (the criterion can be a maximum number of epochs
or a precision for example),

‚ a dataset which can be simulated or downloaded.

Each of these components can be matched with a single file. And to make this even easier, templates for
each are available on the website and repository. Several optimization problems like the LASSO, Logis-
tic Regression with penalties, Ordinary Least Squares . . . are already available on the main repository
of the library. And after cloning the chosen one (for example benchmark lasso), a simple

$ benchopt run ./benchmark_lasso

will run all solvers on the datasets. Option flags are available to only run on some. But sometimes one
might want to see how behaves a solver on some examples before using it. And this, without needing
to code it and take a certain time to run the comparisons. This is where the other side of the BenchOpt

website comes in. This website had a pre-existing base that we worked on during the internship to
present more informations to the users.

https://benchopt.github.io/results/

Choose the problem to solve. The results part’s strength of BenchOpt results in the easy access and
visualizations of benchmarks quickly, on a website, but with all the informations that one might need.
Currently there are 8 different optimization problems available (see Figure 5.1) and several benchmarks
in each.

1https://tommoral.github.io/about.html
2http://alexandre.gramfort.net/
3http://josephsalmon.eu/
4https://tomdlt.github.io/
5https://mathurinm.github.io/

https://benchopt.github.io/
https://benchopt.github.io/results/
https://tommoral.github.io/about.html
http://alexandre.gramfort.net/
http://josephsalmon.eu/
https://tomdlt.github.io/
https://mathurinm.github.io/
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Figure 5.1: Index page of the BenchOpt results webpage. Each problem can be clicked on and lead to
the available files. Hovering on one displays the number of files inside.

Choose the benchmark As aforementioned, on one problem we can benchmark several solvers on
several datasets. Sometimes, the hardware plays an important role in the resulting performances. For
example, with CPUs, an Intel Core i3 can not be expected to be as fast as an Intel Core i9. So for the
benchmarks to be useful, hardware related informations are displayed (Figure 5.2), with more infor-
mations one click away. As more users come, more examples are needed for the community. With a
single command6 users can publish their results on the website. This participative building can lead
to many available files. This is why we created a filter for the main system information in the sidebar
(another filter is available above the table where user can directly write words). Users only have to click

Figure 5.2: Page of the availables benchmark for the Logistic Regression with `2 penalty. There are
three benchmarks available. The last one was run on four different datasets. Only the last two have
system information available. Filters are inside the sidebar on the left.

6More information at https://benchopt.github.io/publish.html#publish-doc

https://benchopt.github.io/publish.html#publish-doc
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on the benchmark they want, select the visualization and get an interactive plot using Plotly directly
available.

Programming side The goal of this static and github-pages supported website is that it can expand
easily and with as few maintenance as possible. Typically, if another problem is added, a new box does
not need to be manually added to the main page. This is made possible by Mako7. This library lets us
use some Python programming directly inside an HTML template. The syntax is very close to PHP, only
without the need of a server. CSS is loaded to modify the style of the objects (typically the colors, sizes
and some animations). And finally Javascript performs actions like on-click responses when the user
clicks on a button (like with the filters).

Portability Hovering, appearing sidebar, buttons and on-click actions are often well working on com-
puters. However, mobile devices are a non-negligible part of devices from which we browse the internet
everyday. So we adapted the website to mobile devices, for example by removing the sidebar and using
a filter menu (Figure 5.3) to have a better experience.

Figure 5.3: Mobile filtering is not made with the sidebar, but in a menu over the page. This allows
flexibility for different smaller screen sizes.

Results page After selecting the benchmark of your choice, the page of the results appear. In the
system informations, we have besides the number of CPUs, ram, platform and processor that were
available before. Added to them are the Numpy and Scipy versions alongside the Blas and Lapack

libraries. Several dropdown menus allow us to change the datasets, objectives measured and also the
kind of the plot (suboptimality curve, histogram,. . . ). One last button was added using PlotlyJs to be
able to toggle between a plot in loglog scale and semilog-y.

7https://www.makotemplates.org/

https://www.makotemplates.org/
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Figure 5.4: Page of the results for the quantile regression.



6Conclusion

We have presented an implementation of gradient descent methods using the GPU to solve a penalized
linear model with first order interactions in high dimensional setting. Different optimization algo-
rithms exploiting the structure of the problem have been compared against vanilla (and warm) coordi-
nate descent. We have applied our algorithms to both simulated and real datasets using the distance
to the subdifferential as stopping criterion for our estimator. We have also noticed that the condition
number and the values of the penalties lead to different performances. Overall, on a path with highly
regularized genomics data, accelerated proximal gradient descent with CUDA backend lead to better
time performances. We also have presented a way to make easy and reproducible benchmarks with the
BenchOpt library. Visualizations being a key element, we improved their website for a better-looking
experience and device-free access.

Possible future work could be about looking for better bounds for the convergence of the distance
to the subdifferential. Improvements on the BenchOpt website and library are also still being made. It
could also be interesting to look at the performances of the algorithms with CUDA against current opti-
mization algorithms into the R libraries. And finally, we used the product to generate our interactions.
For biologists, it is often interesting to consider min or max functions instead. They lead in practice to
different behaviors in time consumption that could also be studied.
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AConvergence rates

As a stopping criterion, we choose the distance from 0 to the subdifferential of the primal objective
function taken at the current iterate. Convergence rates can be explicited as it is often done for the
objectives convergence.

A.1 A simple case: Ordinary-Least-Squares

Let us start by considering a differentiable case. In particular, we investigate the least-squares case:

POLSpβq “
1

2n

∥∥∥Xβ´ y∥∥∥2
2
.

We aim at upper bounding

∆

´

βk ,β˚
¯

“ d‖¨‖8

´

0,BPOLSpβkq
¯

´ d‖¨‖8

´

0,BPOLSpβ˚ q
¯

, (A.1)

where βk is the kth iterate generated by gradient descent and β˚ is a minimizer1. Since β˚ is a
minimizer, we can simplify Equation (A.1). The subdifferential BPOLSpβ˚q reduces to the singleton
t∇POLSpβ˚qu “ t0u by optimality. Hence, to upper bound Equation (A.1) one can simply upper bound
dp0,∇POLSpβkqq “

∥∥∥∇POLSpβkq∥∥∥8.

Proposition A.1.1. For X P Rnˆp, k ě 0, γ “ 1{L with L (resp. µ) the largest (resp. smallest) eigenvalue of
the Hessian of POLS at optimum, and κ “ L{µ the condition number of X, we have the following inequality:∥∥∥BPOLSpβkq∥∥∥8 ď pLexp

ˆ

´
k
κ

˙∥∥∥β0´ β˚
∥∥∥
8

. (A.2)

Proof. We follow here the line of the proof showing the convergence of the objectives by (Bach, 2021).

Remark that the Hessian matrix (B
2POLS
B2β

p¨q) is constant for all β P Rp, so we write H for this matrix. In
particular

H “
1
n
XJX , (A.3)

Hβ˚ “
1
n
XJy . (A.4)

It follows that

∇POLSpβkq “Hpβk ´ β˚q . (A.5)

We can iterate the gradient descent update formula (Equation (2.7)) with step size γ , leading to:

∇POLSpβkq “H
`

βk´1´γ∇P pβk´1q´ β˚
˘

A.5
“HpId´γHqpβk´1´ β˚q

“HpId´γHqkpβ0´ β˚q .

1we assume it to be unique for simplicity.
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Taking the infinite norm on both sides, we get:∥∥∥∇POLSpβkq∥∥∥8 “ ∥∥∥HpId´γHqkpβ0´ β˚q
∥∥∥
8

ď |||H |||8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
pId´γHqk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

∥∥∥β0´ β˚
∥∥∥
8

,

where for a matrix M PRnˆp, |||M|||8 is the induced norm of ‖¨‖8 applied to M, defined as:

|||M|||8 “max
jPrps

n∑
i“1

ˇ

ˇmij
ˇ

ˇ .

Using that |||M|||8 ď
?
p |||M|||2,∥∥∥∇POLSpβkq∥∥∥8 ď?p |||H |||2?p ˇˇˇˇˇˇˇˇˇpId´γHqk ˇˇˇˇˇˇˇˇˇ2 ∥∥∥β0´ β˚

∥∥∥
8

.

Finally, if we denote η P R
˚
` an eigenvalue of the Hessian H , then (using the spectral theorem), for a

continuous function ϕ, ϕpηq is an eigenvalue of ϕpHq. We can use this property to find an upper bound
of

ˇ

ˇ

ˇ

ˇ

ˇ

ˇpId´γHqk
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2:

max
ηPrµ,Ls

p1´γηqk “
´

1´
µ

L

¯k

“

´

1´κ´1
¯k

.

Combining our results leads to Proposition A.1.1:∥∥∥BPOLSpβkq∥∥∥8 ď pL´1´κ´1
¯k ∥∥∥w0´w˚

∥∥∥
8

ď pLexp
ˆ

´
k
κ

˙∥∥∥β0´ β˚
∥∥∥
8

.

A.2 Ridge regularization

Building up to the Elastic-Net, let us consider the Ridge regularization with λ ě 0 as `2 penalty. The
primal considered is:

PRidge “
1

2n

∥∥∥Xβ´ y∥∥∥2
2
`
λ
2

∥∥∥β∥∥∥2
2
. (A.6)

Proposition A.2.1. For X PRnˆp, k ě 0, γ “ 1{L with L (resp. µ) is the largest (resp. smallest) eigenvalue of
the Hessian of P at optimum, and κ “ µ{L the condition number of X, we have the following inequality:∥∥∥BPRidgepβkq∥∥∥8 ď pLexp

ˆ

´
k
κ

˙∥∥∥β0´ β˚
∥∥∥
8

. (A.7)

Meaning that the convergence rate for Ridge regularization and Ordinary-Least-Squares only differs
by the condition number.

Proof. The first order conditions give us:

∇PRidgepβq “
1
n
XJpXβ´ yq`λβ

“

„

1
n
XJX`λ Id



β´
1
n
XJy

“

„

1
n
XJX`λ Id



pβ´ β˚q .
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Noticing that 1
nX

JX`λ Id is the Hessian matrix of PRidge, constant for all β PRp, we thus recover:

∇PRidgepβq “Hpβ´ β˚q . (A.8)

Equation (A.8) is exactly the same as the OLS case. Thus with the exact same steps we obtain Proposi-
tion A.2.1.

A visualization of the convergence rate in Proposition A.2.1 is available in Figure 3.4.

A.3 LASSO regularization

In Appendix A.1 and Appendix A.2 we used the closed form of the solution. With the LASSO, we do
not have this. Let us consider the primal with λą 0 as penalty:

PLASSOpβq “
1

2n

∥∥∥Xβ´ y∥∥∥2
2
`λ

∥∥∥β∥∥∥
1
. (A.9)

Proposition A.3.1. Under the assumptions of Proposition A.1.1:

∆pβk ,β˚q ď pLexp
ˆ

´
k
κ

˙∥∥∥β0´ β˚
∥∥∥
8

. (A.10)

Proof. The subgradient of PLASSO at iterate k ě 0 writes:

BPLASSOpβkq “
1
n
XJpXβk ´ yq`λB‖¨‖1pβ

kq

.

Then

∆pβk ,β˚q “ d

ˆ

0,
1
n
XJpy´Xβkq`λB‖¨‖1pβ

kq

˙

“

∥∥∥∥∥ST
ˆ

1
n
XJpy´Xβkq,λ

˙∥∥∥∥∥
8

ď

∥∥∥∥∥1
n
XJpy´Xβkq

∥∥∥∥∥
8

(A.11)

ď
∥∥∥∇POLSpβkq∥∥∥8 ,

with Equation (A.11) obtained using that the soft-thresholding operator is non-expansive coordinate-
wise (Hale, Yin, and Zhang, 2008, Lemma 3.2) i.e.,

@x,y PRn @i P rns, |STpx,λqi ´ STpy,λqi | ď |xi ´ yi | .

Using Proposition A.1.1 we obtain our upper bound.

Notice that Equation (A.11) is in fact not threshold-dependant. So in a weighted LASSO problem
with penalties pλjq

p
j“1, we would have:

∆pβk ,β˚q “max
jPrps

ˇ

ˇ

ˇ

ˇ

ST
ˆ

1
n
XJj py´Xβ

kq,λj

˙
ˇ

ˇ

ˇ

ˇ

ďmax
jPrps

ˇ

ˇ

ˇ

ˇ

1
n
XJj py´Xβ

kq

ˇ

ˇ

ˇ

ˇ

ď
∥∥∥∇POLSpβkq∥∥∥8 .

Thus leading to the same upper bound.
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A.3.1 Elastic-Net regularization

For the Elastic-Net, we consider the primal:

PEnetpβq “
1

2n

∥∥∥Xβ´ y∥∥∥2
2
`λ`1

∥∥∥β∥∥∥
1
`
λ`2

2

∥∥∥β∥∥∥2
2
. (A.12)

The Elastic-Net being an augmented LASSO problem (Section 2.5.1), we have the following corol-
lary.

Corollary A.3.1. For ry “ ry |0psJ, rX “
„

X
a

λ`2
nIdpˆp



, we get:

∆pβk ,β˚q ď pL
rX exp

ˆ

´
k
κ
rX

˙∥∥∥β0´ β˚
∥∥∥
8

,

with L
rX “

σmaxpXq`nλ`2
n and κ

rX “
σmaxpXq`nλ`2
σminpXq`nλ`2

.

Proof. We only need to notice that the spectrum of rXJ rX is the same as XJX shifted of nλ`2
. Then we

apply Proposition A.3.1 to Equation (A.9) with ry and rX.

We can visualize the impact of the `2 regularization on the convergence. Figure A.1 shows that with
larger `2 regularizations, the proximal descent for the Elastic-Net converges faster. This is a visualiza-
tion of the dependance of ∆ by the condition number from Corollary A.3.1.
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Figure A.1: Elastic-Net with `1 penalty set to 0.5 and varying `2 penalties on the leukemia dataset. For
information, λmax » 0.626 for this dataset.



BDouble interactions equivalence

For the interactions, the vector Θ considered was in R

ppp`1q
2 . This implies that we removed all the

feature-interactions which occurred more than once in the matrix Z. However, we could also consider
to keep all of the interactions, meaning have rZ P Rnˆp

2
and rΘ P Rp

2
the full versions, with a supple-

mentary constraint on the symmetry of the coefficients in rΘ. With the notations of Chapter 2, if we
exclude redundant interactions, then K “ q “ ppp`1q{2, else K “ rq “ p2. In the later case, we write rZ the
interaction matrix. The problem is then:

pp P min
βPRp

rΘPRpˆp

1
2n

∥∥∥∥y´Xβ´ rZ rΘ

∥∥∥∥2

2
` gp1qpβq` gp2qprΘq` ιprΘτ

rqpi,jq “
rΘτ

rqpj,iqq . (P2)

where ιprΘτ
rqpi,jq “

rΘτ
rqpj,iqq “ 0 if the condition is verified and`8 o.w. First, we study y´Xβ´ rZ rΘ, with

the symmetry constraint:

y´Xβ´ rZ rΘ “ y´Xβ´
∑

pi,jqPrps2

rZij rΘij

“ y´Xβ´ 2
∑
iPrps

∑
jąi

rZτqpi,jq
rΘτqpi,jq´

∑
iPrps

rZτqpi,iq
rΘτqpi,iq

“ y´Xβ´
∑
iPrps

∑
jąi

rZτqpi,jq2
rΘτqpi,jq´

∑
iPrps

Zτqpi,iqΘτqpi,iq .

Posing Θτqpi,jq “ 2rΘτqpi,jq for i , j, we thus get

1
2n

∥∥∥∥y´Xβ´ rZ rΘ

∥∥∥∥2

2
“

1
2n

∥∥∥∥∥∥∥∥y´Xβ´
∑
iPrps

∑
jąi

Zτqpi,jqΘτqpi,jq´
∑
iPrps

Zτqpi,iqΘτqpi,iq

∥∥∥∥∥∥∥∥
2

2

“
1

2n

∥∥∥y´Xβ´ZΘ∥∥∥2
2
.

We execute the same decomposition on the penalties depending on rΘ. This leads to modifying gp2q

as follows:

gp2qprΘq “ λ
rΘ,`1

∑
iPrps

ˇ

ˇ

ˇ

rΘτqpi,iq

ˇ

ˇ

ˇ
` 2λ

rΘ,`1

∑
iąj

ˇ

ˇ

ˇ

rΘτqpi,jq

ˇ

ˇ

ˇ
`
λ
rΘ,`2

2

∑
iPrps

rΘ2
τqpi,iq

`λ
rΘ,`2

∑
iąj

rΘ2
τqpi,jq

“ λΘ,`1

∑
iPrps

ˇ

ˇ

ˇ

rΘτqpi,iq

ˇ

ˇ

ˇ
`λΘ,`1

∑
iąj

ˇ

ˇ

ˇ
Θτqpi,jq

ˇ

ˇ

ˇ
`
λΘ,`2

2

∑
iPrps

Θ2
τqpi,iq

`
λΘ,`2

2

∑
iąj

˜

Θτqpi,jq
?

2

¸2

,

using the same variable change for non-diagonal terms. Considering as reference the problem in di-
mension q “ ppp`1q{2, then we only need to multiply instead of dividing in the `2 penalty. So to resume,
solving pP q in dimension q is equivalent to solving:

pp “ min
βPRp

rΘPRpˆp

1
2n

∥∥∥∥y´Xβ´ rZ rΘ

∥∥∥∥2

2
` gp1qpβq

`λΘ,`1

∥∥∥∥rΘ∥∥∥∥
1
`
λΘ,`2

2

∑
iPrps

rΘτ
rqpi,iq

`λΘ,`2

∑
iPrps

∑
jąi

rΘ2
τ
rqpi,jq

` ιprΘτ
rqpi,jq “

rΘτ
rqpj,iqq .

(B.1)
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We then compute the proximal operator for the rΘ part with the separability of the components
(Beck, 2017, p. 135), which leads to:

• if i “ j:

prox
µλΘ,`1

ˆ

|¨|`
λΘ,`2

{λΘ,`1
2 p¨q2

˙ptq “
signptq

1`µλΘ,`2

p|t| ´µλΘ,`1
q` ,

• if i , j:

prox
µλΘ,`1

ˆ

|¨|`2
λΘ,`2
λΘ,`1

p¨q2

˙ptq “
signptq

1` 2µλΘ,`2

p|t| ´µλΘ,`1
q` .
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