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Résumé. En apprentissage supervisé — par exemple en classification d’images — les jeux
de données modernes sont généralement étiquetés par une foule de travailleurs. Des erreurs
d’étiquetage peuvent se produire en fonction de la capacité des travailleurs et de la difficulté
d’identification des taches. Certaines taches sont intrinsequement ambigués et peuvent induire
en erreur les travailleurs les plus experts, ce qui nuit a ’étape d’apprentissage. Dans un cadre
standard d’apprentissage supervisé — avec une étiquette par tache — l'aire sous la marge
(AUM) est utilisée pour identifier les données mal étiquetées. Nous adaptons ’AUM pour
identifier les taches ambigués dans les scénarios d’apprentissage par la foule, en introduisant
I’AUM pondérée (WAUM). Le WAUM est une moyenne des AUMs pondérés par des scores
dépendant de la tache. Nous montrons que le WAUM peut aider a écarter les taches ambigués
de I'ensemble d’apprentissage, ce qui conduit a une meilleure généralisation ou performance
de calibration.

Mots-clés. Apprentissage participatif, ambiguité des taches

Abstract. In supervised learning — for instance in image classification — modern massive
datasets are commonly labeled by a crowd of workers. Labeling errors can happen because of
the workers abilities or tasks identification difficulty. Some intrinsically ambiguous tasks might
fool expert workers, which could eventually be harmful to the learning step. In a standard
supervised learning setting — with one label per task — the Area Under the Margin (AUM)
is tailored to identify mislabeled data. We adapt the AUM to identify ambiguous tasks in
crowdsourced learning scenarios, introducing the Weighted AUM (WAUM). The WAUM is
an average of AUMs weighted by task-dependent scores. We show that the WAUM can help
discard ambiguous tasks from the training set, leading to better generalization or calibration
performance.

Keywords. Crowdsourcing, Task ambiguity

1 Introduction

Crowdsourcing labels for supervised learning has become quite common in the last two
decades, notably for image classification datasets. Using a crowd of workers is fast, simple
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Figure 1: Learning with crowdsourcing labels: from label collection with a crowd to training on a pruned
dataset. High ambiguity from either crowd workers or tasks intrinsic difficulty can lead to mislabeled data
and harm generalization performance. To illustrate our notation, here the set of tasks annotated by worker
ws is T (ws) = {1,3} while the set of workers annotating task =3 is A(x3) = {1, 3,4}.

(see Fig. 1)) and less expensive than using experts. Furthermore, aggregating crowdsourced
labels instead of working directly with a single one enables modeling the sources of possible
ambiguities and directly taking them into account at training (Aitchison| 2021)). With deep
neural networks nowadays common in many applications, both the architectures and data
quality have a direct impact on the model performance (Miller et al., [2019; Northcutt et al.|
and on calibration (Guo et al., 2017)). Yet, depending on the crowd and platform’s
control mechanisms, the quality of the labels might be low, with possibly many mislabeled
instances (Miiller and Markert, 2019)), leading to poor generalization (Snow et al., 2008)).

Popular label aggregation schemes take into account the uncertainty related to workers’
abilities: for example by estimating confusions between classes, or using a latent variable
representing each worker trust (Dawid and Skene| 1979; [Kim and Ghahramani, [2012; Sinhal
et al., 2018; |Camilleri and Williams, [2019). This leads to scoring workers without taking into
account the inherent difficulty of the tasks at stake. Inspired by the Item Response Theory
(IRT) from Birnbaum (1968)), Whitehill et al. (2009)) combined both the task difficulty and the
worker’s ability in a feature-blind fashion for label aggregation. All the feature-blind strategies
only require the labels but not the associated featured!] For instance, GLAD (Whitehill et al.|
estimates a task difficulty without the actual task: its estimation only relies on the
collected labels and not on the tasks themselves (in image-classification settings, this means
the images are not considered for evaluating the task difficulty). In the classical supervised
learning setting, the labels are said to be hard — i.e., a Dirac mass on one class. Multiple
crowdsourced labels induce soft labels — i.e., probability distributions over the classes — for
each task. Our motivation is to identify ambiguous tasks from their associated features, hence
discarding hurtful tasks (such as the ones illustrated on Fig. [2bj and Fig. .

Recent works on data-cleaning in supervised learning (Han et al., [2019; Pleiss et al.|
2020; Northcutt et al., 2021al) have shown that some images might be too corrupted or too
ambiguous to be labeled by humans. Hence, one should not consider these tasks for label
aggregation or learning since they might reduce generalization power.

In this work, we combine task difficulty scores with worker abilities scores, but we measure
the task difficulty by incorporating feature information. We thus introduce the Weighted Area
Under the Margin (WAUM), a generalization to the crowdsourcing setting of the Area Under
the Margin (AUM) by [Pleiss et al.| (2020). The AUM is a confidence indicator in an assigned

'In this work we use the term task and feature interchangeably.
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Figure 2: Three images from CIFAR-10H dataset (Peterson et al.,2019): the airplane image (a) is easy, while
the landscape (b) is ambiguous due to the image’s poor quality. The last image (c) is a black cat face often
perceived as the horns of a wild deer.

label defined for each training task. It is computed as an average of margins over scores
obtained along the learning steps. The AUM reflects how a learning procedure struggles to
classify a task to an assigned label. The AUM is well suited when training a neural network
(where the steps are training epochs) or other iterative methods. For instance, it has led to
better network calibration (Park and Carageal, [2022) using MixUp strategy (Zhang et al.,
2018)), i.e., mixing tasks identified as simple and difficult by the AUM. Our extension of the
AUM, the WAUM identifies harmful data points in crowdsourced datasets, so one can prune
ambiguous tasks that degrade the generalization. It is a weighted average of workers AUM,
where the weights reflect trust scores based on task difficulty and workers’ ability.

This work is a condensed version of |Lefort et al. (2022). The full article provides more
results on simulations and real datasets. We also show to impact of the pruning hyperparameter
introduced by the WAUM and consider cases where pruning might be harmful. Finally, we
introduce the peerannot library available at https://github.com/peerannot/peerannot
that was used to generate the results.

2 Weighted Area Under the Margin

2.1 Definitions, notation, and construction

We consider classical multi-class learning notation, with input in X and labels in [K] :=
{1,..., K}. The set of tasks is written as Xyrain = {21, ..., Tn.... }, and we assume there are
Nyask 0-0.d tasks and labels {(x1,97), ..., (Tnuus Y. )} With underlying distribution denoted
by P. The true labels (¥} )icin...] are unobserved but crowdsourced labels are provided by
Nuorker WOTKETS (W;) jcinuomer]- WE Write A(z;) = {J € [Nyorker] : Worker w; labeled task w;}
the annotators seiﬂ of a task x; and T (w;) = {i € [nsask] : Worker w; answered task z;}
the tasks set for a worker w;. For a task x; and each j € A(x;), we denote ylw € [K] the

2As illustrated in Fig. |1} the size of the annotators and tasks sets might not be fixed, and the standard
supervised setting is recovered when |A(z;)| = 1 for all ¢ € [Nyagk]-
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label answered by worker w; and we call soft label any vector g; in the standard simplex
Ag 1= {p e RX, S pp=1,pp > 0}. For any set S, we write |S| for its cardinality. The
training set has task-wise and worker-wise formulations:

TNtask Tyorker

Dtram_U { i, (ys forje.A(a:z)}— U {(%(Z ) fomeﬂw])} Y

J=1 O

D(J)

train

DS model. The Dawid and Skene (DS) model (Dawid and Skene, [1979) aggregates answers
and evaluates the workers’ confusion matrix to observe where their expertise lies exactly. The
confusion matrix of worker w; is denoted by 79 € RE*K and reflects individual error-rates

between pairs of labels: ﬂéj ) IP’(yl = k|y; = () represents the probability that worker w;
gives label k to a task whose true label is £. The model assumes that the probablhty for a
task x; to have true label y* = ¢ follows a multinomial distribution with probabilities 77/ for
each worker, independently of X i, (feature-blind). In practice, DS estimates are obtained
thanks to the EM algorithm to output estimated confusion matrices (1)) ;e .o 1.

Ambiguous tasks identification with the AUM. [Pleiss et al| (2020) have introduced
the AUM in the standard learning setting (i.e., |A(z;)| = 1 for all i € [ngask]). Given a
training task and a label (x,y) € Dirain, let 21 (z) € RX be the logit score vector at epoch
t < T when learning a neural network on Dy,ai, (where T is the number of training epochs).
We use the notation z(f)(x) > > z[(t)]( ) for sorting (zft)(x), z%) (x)) in non-increasing
order. Let us denote O'%t]) (z) := o(2®(z)) the softmax output of the scores at epoch t. Sorting
the probabilities in decreasing order such that a[(f]) () > > O'[( |(z), the AUM reads:

T
1
AUM (2, ; Deasa) =5 > [0 (2) = o}3) ()] - (2)
t=1

We write AUM (z,y) instead of AUM (z, y; Dirain) When the training set is clear from the
context. Pleiss et al.| (2020)) use an average of margins over logit scores, whereas we instead
consider the average of margin after a softmax step in Eq. . We have adapted the original
AUM relying on logit scores by applying a softmax step. This tempers scaling issues as
advocated by |Ju et al. (2018)) in ensemble learning. Moreover, we consider the margin
introduced by |Yang and Koyejo (2020) instead. Indeed, the corresponding hinge loss has
better theoretical properties than the one used in the original AUM, especially in top-k
settingsﬂ (Lapin et al., 2016; |Yang and Koyejo, 2020; |Garcin et al., [2022).

During the training phase, the AUM keeps track of the difference between the score
assigned to the proposed label and the score assigned to the second-largest one. It has been
introduced to detect mislabeled observations in a dataset: the higher the AUM, the more
confident the prediction is in the assigned label. Hence, the lower the AUM, the more likely
the label is wrong. Finally, note that the AUM computation depends on the chosen neural

3For top-k, consider 0[(]&1} (z) instead of 0[2] ( ) in Eq. .
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Figure 3: CIFAR-10H: 8 worst images detected for the cat (first row) and deer (second row) labels in CIFAR-10.
(a) the worst AUMs for the original method by [Pleiss et al| (2020)), training on the test set of CIFAR-10; (b)
the worst WAUMs with our proposed method training on CIFAR-10H. Both are computed using a Resnet-18.

network and on its initialization: pre-trained architectures could be used, yet any present
bias would transfer to the AUM computation.

WAUM. The AUM is defined in a standard supervised setting with (hard) labels: we
now adapt it to crowdsourced frameworks to improve the identification of hard tasks. Let
s9(z;) € [0,1] be a trust factor in the answer of worker w; for task ;. The WAUM is then
defined as:

! Zs (x;) AUM(xl,yZ() ) . (3)
> V@) &
j/

WAUM(z;) =

It is a weighted average of AUMs over each worker’s answer with a per task weighting score
sU)(x;) based on workers’ abilities. This score considers the impact of the AUM for each
answer since it is more informative if the AUM indicates uncertainty for an expert than for a
non-expert.

The scores s¥) are obtained a la Servajean et al.| <|2017[): each worker has an estimated
confusion matrix 7 € RE*X_ Note that the vector diag(7 )) € R represents the probability
for worker w; to answer correctly to each task. With a neural network classifier, we estimate
the probability for the input z; € Xirain to belong in each category by o) (x;), i.e., the
probability estimate at the last epoch. As a trust factor, we propose the inner product
between the diagonal of the confusion matrix and the softmax vector:

sV () = (diag(7),0 P (;)) € [0,1] . (4)

The scores control the weight of each worker in Eq. . This choice of weight is inspired
by the bilinear scoring system of GLAD (Whitehill et al., [2009), as detailed hereafter. The
closer to one, the more we trust the worker for the given task. In GLAD, the trust score is
modeled as the product «;/;, Wlth a; € R (resp. f; € (0,+00)) representing worker ability
(resp. task difficulty). In Eq. (4), the diagonal of the confusion matrix #\/) represents the
worker’s ability and the Softmax the task difficulty. Hence, the score sV)(z;) can be seen as a
multidimensional version of GLAD’s trust score.
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Dataset pruning. Our procedure (Algorithm (1)) proceeds as follows. We initialize our
method by estimating the confusion matrices for all workers. For each worker w;, the AUM
is computed for its labeled tasks, and so is its worker-dependent trust scores s)(z;) with
Eq. (). The WAUM in Eq. is then computed for each task. The most ambiguous tasks,
the ones whose WAUM are below a threshold, are then discarded, and the associated pruned
dataset Dpruned is output.

We consider for the threshold a quantile of order a € [0, 1] of the WAUM scores. The
hyperparameter « (proportion of training data points pruned) can be chosen on a validation
set, yet choosing o € {0.1,0.05,0.01} has led to satisfactory results in all our experiments.

Algorithm 1 WAUM (Weighted Area Under the Margin).
Input: Dirain: tasks and crowdsourced labels,

a € [0,1]: proportion of training points pruned

T € N: number of epochs

Est: Estimation procedure for the confusion matrices
Initialization: Get confusion matrix {ﬁ(j)}je[nworker] from Est
Train a neural network for T" epochs on Dirain
for J € [nworker] do

Get AUM(z;, ygj);Dtrain) using Eq. for i € T (w;)

Get trust scores s\)(z;) using Eq. (4)) for i € T (wy)
for each task x € Xipgin do
|  Compute WAUM(z) using Eq.
Get go (WAUM(Z:))ic[nsan]> @-quantile threshold

Dpruned = { (1’1‘, (yz(]))]eA(mz)) WAUM(xz) 2 Qo T € Xtrain}
Result: Dpruned

2.2 Label aggregation and classifier training.

Once a pruned dataset Dprunea has been obtained thanks to the WAUM, one can create soft
labels through an aggregation step, and use them to train another classifier. Aggregated soft
labels contain information regarding human uncertainty, and could often be less noisy than
NS labels. They can help improve model calibration (Wen et al., 2021; Zhong et al.| 2021)), a
property useful for interpretation (Jiang et al.. |2012; [Kumar et al., |2019). Concerning the
classifier training, note that it can differ from the one used to compute the WAUM. We train
a neural network whose architecture is adapted dataset per dataset and that can differ from
the one used in Algorithm (1| (it is the case for instance for the LabelMe dataset).

For an aggregation technique agg, we write the full training method WAUM + agg and
instantiate several choices below. By default, our aggregation strategy is a weighted version of
DS, coined WAUM + WDS. It weights votes according to each worker’s confidence as follows.
First, it estimates confusion matrices {ﬁ(j)}je[nworker] with DS applied to Dprunea- Then, it

computes soft labels (§,Y°%) e (k) for all tasks x; € Xprunea by weighting labels with workers’

. SWDS _ i : ~ ~ (5) v .
confidence: 7, = S with g, = (jeAZ(m') Wk,k]l{ygf)zk})ke[m for all z; € Xyruned-



3 Experiments

Metrics investigated After training with aggregated labels, we report two performance
metrics on a test set Diesr: top-1 accuracy and expected calibration error (ECE) (with
M = 15 bins as in (Guo et al. (2017)). We also report the training accuracy AcCerain(y*,9) =
|Dtim‘ ZLZ}““‘ L fargmax gi=y1}> the accuracy of the aggregation method on the training set’s
true labels. The training accuracy is computed on Dpyneq for the WAUM since tasks detected

ambiguous are not labeled.

LabelMe dataset This dataset consists in classifying 1000 images in K = 8 categories. In
total 77 workers are reported in the dataset (though only 59 of them answered any task at
alll). Each task has between 1 and 3 labels. A validation set of 500 images and a test set of
1188 images are available. The architecture used for training is a VGG-16 combined with two
dense layers as described in Rodrigues and Pereiral (2018). The VGG-16 backbone classifier
is pre-trained on Imagenet with data augmentation using random flipping, shearing and
dropout. Adam optimizer with a learning rate set to 0.005 is used during the 1000 training
epochs. For the WAUM computation, 500 epochs are used with a pre-trained Resnet-50 (it
differs from the modified VGG used later for training) and the same optimization settings.
Contrary to the modified VGG-16, the Resnet-50 could be fully pre-trained. The general
stability of pre-trained Resnets, thanks to the residuals connections, allows us to compute the
WAUM with way fewer epochs (each being also with a lower computational cost) compared
to VGGs (He et al., |2016). The hyperparameter « is set to 0.01. Experiments were executed
with Nvidia RTX 2080 and Quadro T2000 GPUs. Additional coding details at available
at https://github.com/peerannot/peerannot/. Two other real datasets, CIFAR-10H and
Music, are available in |Lefort et al. (2022)).
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Figure 4: LabelMe: dataset visualization

We observe in Tab. [1| that the WAUM improves the final test accuracy when combined
with the CONAL network. CoNAL was specifically tailored for LabelMe. Hence, by modeling
a common confusion between classes, pruning most ambiguous tasks with the WAUM, CoNAL
improves the classifier generalization performance and calibration in comparison to simple
strategies. Combined with our WAUM, additional gains are obtained on both metrics.
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Table 1: LabelMe: generalization performance by crowdsourcing strategy (here ov = 0.01)

Aggregation method Acciest ECE Acctrain
MV 85.4+1.0 0.136 + 0.01 76.1
NS 86.1£1.0 0.138 + 0.01 76.9
DS 86.8 £ 0.5 0.123 £ 0.01 79.7
GLAD 87.1+0.9 0.119+0.01 77.6
CrowdLayer 85.4+4.2 0.142 +0.04 -
CoNAL(A =0) 88.1+1.0 0.119+0.01 -
CoNAL(X = 10—4) 86.2 4 6.4 0.135 4 0.06 -
WAUM + WDS 87.1+0.8 0.129 + 0.01 74.4
WAUM+CoNAL(A = 0) 89.2+1.0 0.108 + 0.01 -
WAUM4CoNAL(M = 10~%) 90.0 £ 0.8 0.099 £ 0.01 -

4 Conclusion and future work

In this paper, we investigate crowdsourcing aggregation models and how judging systems may
impact generalization performance. Most models consider the ambiguity from the workers’
perspective (very few consider the difficulty of the task itself) and evaluate workers on hard
tasks that might be too ambiguous to be relevant, leading to a performance drop. Using
a popular model (DS), we develop the WAUM, a flexible feature-aware metric that can
identify hard tasks and improves generalization performance. It also yields a fairer evaluation
of workers’” abilities and supports recent research on data pruning in supervised datasets.
Independently of pruning, the WAUM allows identifying early the images that need extra
labeling efforts, or that cannot be correctly labeled at all.

Extension of the WAUM to more general learning tasks (e.g., top-k classification) would
be natural, including labeling tasks sequentially. Indeed, the WAUM could help to identify
tasks requiring additional expertise and guide how to allocate more experts/workers for such
identified tasks. Future works could adapt the WAUM to imbalanced crowdsourced datasets
to identify potentially too ambiguous images that naturally occur in open platforms like
Pl@ntNetf]

Last but not least, on the dataset side, we believe that the community would benefit
from releasing a challenging dataset (such as the one by Garcin et al. (2021) for instance)
tailored to learn in crowdsourcing settings. Indeed, a dataset with the following properties
could greatly foster future research in the field: a varying number of labels per worker, a high
number of classes, and a subset with ground truth labels to test generalization performance.
Acknowledgment: Work supported by the Chaire CaMeLOt ANR-20-CHIA-0001-01.
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