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EXISTING AGGREGATION STRATEGIES
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(WEIGHTED) MAJORITY VOTES

CLASSICAL AGGREGATION STRATEGY Q

yAiWMV = argmax Z i 1(y

kG[K] jeA(x )

For example with unbalanced weights:
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CLASSICAL AGGREGATION STRATEGY

(WEIGHTED) MAJORITY VOTES

Many existing weight choices:
» Inter worker agreement: WAWA®:
weight(w;) = Acculacv({y, 4 V)
» Feature importance + game theory: Shapley-value weight®
» Matrix completion: MACE®

Pros: "simple” weight can scale to large datasets and be easy to interpret
Cons: Can not capture worker skills in detail

(4)https://success.appen.com/hc/en-us/artlcle5/202703205-(alculatlng-Worker-Agreement»with-Agg regate-Wawa

OF; Lefort, B. Charlier, etal. Quly 2024¢). “Weighted majority vote using Shapley values in crowdsourcing”. In: CAp 2024 - Conférence sur [Apprentissage
Automatique. Lille, France.

(G)D Hovy et al. (2013). “Learning whom to trust with MACE”. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp.1120-1130.


https://success.appen.com/hc/en-us/articles/202703205-Calculating-Worker-Agreement-with-Aggregate-Wawa

CLASSICAL AGGREGATION STRATEGY

DAWID AND SKENEY)

» Introduced in a medical context (aggregate multiple diagnosis)
» Representworkerj from their pairwise confusions matrix 7() € RK*K

» Probabilistic model on their answers: ‘
YD y* ~ Multinomial(w},{)_.)

with wp((])f = P(workerjanswers ¢ with unknown truth k)

Pros: Cons:

> Memory issue: Ayorker X K?
parameters to estimate only
the confusion matrices

» Finer modelisation

» Can use adversarial workers

() A Dawid and A. Skene (1979). “Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm”. In: J. R. Stat. Soc. Ser. C. Appl. Stat.
28.1, pp. 20-28.



CLASSICAL AGGREGATION STRATEGY

DAWID AND SKENE—MODEL

Probabilistic model — Likelihood (to maximize via the Expectation
Maximization algorithm)

Confusion matrices € R™wvorker KK

Maximum Likelihood (EM)

Estimated label distributions
€ R K




CLASSICAL DEEP-LEARNING STRATEGY

CROWDLAYER®

» Idea: put the DS confusion matrix in a neural network as a new layer

{,ﬁ.(]) }J - [RnworkerXK2

w;
i

ﬁ(j)fe(wi)

i fo 2 =fo(z;) € RE

@) Rodrigues and F. Pereira (2018). “Deep learning from crowds”. In: AAAI. vol. 32



CoNAL®

CLASSICAL DEEP-LEARNING STRATEGY Q

» ldea: CrowdLayer + global and local confusions

{=@}; ﬂ . w9

(wi,”wg +1- wi’“w) folw) | E

?71(.7') cRX

(Q)Z.Chu,]. Ma, and H. Wang (2021). “Learning from Crowds by Modeling Common Confusions.”. In: AAAI, pp. 5832-5840



IDENTIFY AMBIGUOUS TASKS IN CROWDSOURCED
DATASETS



WHEN IMAGES HAVE UNDERLYING AMBIGUITY Q,

K —4 Al(z,y) :
e O:car e« 2:ccat o e - = o E
e l:plane o 3:dog i i i i E y:
ol B o ||| | |
Eon g X | X |m | | | (mee




WHEN IMAGES HAVE UNDERLYING AMBIGUITY Q,

K —4 A(z,y) :
e O:car ¢ 2:icat k. ot 5 _ o E
e l:plane e 3:dog i i i i E y:
ol B ||| [
B on |G| X | X | |mee | | |mee
v | g || X | X | |E| | |




AMBIGUITY IN CLASSICAL SUPERVISED SETTING

AREA UNDER THE MARGIN (AUM)

Goal: identify issues in classical datasets (X1, 1), . - ., (Xu, Vn) € X X [K]

» AUMT9: monitor margin during training

Fl B

Epoch t Epocht Epoch t Epoch t

Target=2, AUM=38.309

Logit values
Logit values
AUM(x)¥ value

AUM(x)® value

(100G, pleiss etal. (2020). “Identifying mislabeled data using the area under the margin ranking”. In: Neur!PS.
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AREA UNDER THE MARGIN (AUM)

Goal: identify issues in classical datasets (X1, 1), - . ., (Xu, V) € X X [K]
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;
1
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AMBIGUITY IN CLASSICAL SUPERVISED SETTING

AREA UNDER THE MARGIN (AUM)

Goal: identify issues in classical datasets (X1, 1), - . ., (Xu, V) € X X [K]
» AUM®™. monitor margin during training
» Classifier: attrainingepoch t € [T],C()(x;) € RX avector of scores
» Scoresordered: C(xj)p; > - - > C(xi)[

Average = Stability Margin between scores:
\L content of Hinge loss

;
1
AUM(x;,y;) = ?Z [C(f)(x,-)yi — C(t)(Xi)[Z]‘|

t=1
Score of assigned label Other maximum score

Challenging for crowdsourcing:

e yjunknown
» ...s0C"(x;),, does not exist

L

(MG, pleiss etal. (2020). “Identifying mislabeled data using the area under the margin ranking”. In: NeurIPS.



AUMC

GOING TO THE CROWDSOURCING SETTING Q

Naive Extension: identify issues in concatenated datasets {(x,-,y,(j))},-f,-

» Plugin estimate of y; using pMV

Average = Stability Margin between scores:
\L margin for top-1 classification
1 T
AUMC(x.5M™) = =37 [C(t)(xi)y,MV - c<f>(x,-)[2]]

t=1
Score of MV label Other maximum score

Issue:
e Lose all worker-related information

e Sensitive to poorly performing workers



GOING TO THE CROWDSOURCING SETTING

WAUM

Weighted Areas Under the Margins: identify issues in concatenated
datasets {(xi, y, )},,
» Scale effects in the scores discarded, need normalization 2

With:
e o(x;) = o(C(x;)) € Ak_q (simplexofdimK — 1)

Average = Stability
Weighted average of AUM Trust score of w; for x;

¢ Margin between scores
o
i t t
WAUM(x,) := Z s0)(x7) TZ aygg(x,.) — ol (x)
cA(x t=1 !
Probability of assigned label by worker wj T

Second maximum probability

(12)¢c Ju, A. Bibaut, and M. van der Laan (2018). “The relative performance of ensemble methods with deep convolutional neural networks forimage
classification”. In: ]. Appl. Stat. 45.15, pp. 2800-2818



WEIGHTS IN THE WAUM

LEVERAGE BOTH TASKS AND LABELS

Our chosen worker/task score:
e Consider ascore (following Servajean etal. (2017) ™)) of the form (4
worker skill x task difficulty

s(j)(x,-) — < diag(ﬁ(i)) ‘ O'(T)(X,‘) > € [0,1]

Worker j overall ability Difficulty of task i

13, Servajean etal. (2017). “Crowdsourcing thousands of specialized labels: A Bayesian active training approach”. In: IEEE Transactions on Multimedia

19.6, pp.1376-1391.
(M)]. Whitehill etal. (2009). “Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise”. In: NeurIPS. vol. 22.
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COMPUTING THE WAUM

THE PIPELINE SUMMARIZED

e Estimate confusion matrices 7() € R¥*X forallj € [nyorker]
(i))

e Train a network on all crowdsourced task/label pairs: (x;, y;

e Compute all WAUM(x;) during training

Usage (for learning):

e Prune x;'s with WAUM(x;) below quantile g, (say « = 0.01)
e Estimate confusion matrices 7() on pruned training dataset
e Aggregate labels and train a classifier on the newly pruned dataset
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(15)]. C. Peterson et al. (2019). “Human Uncertainty Makes Classification More Robust”. In: ICCV, pp. 9617-9626



PRESENTING LABELME DATASET(1®) Q

» 1000 training /500 validation /1188 test images
» 59 workers: each task has up to 3 votes

» 8classes:
highway,insidecity, tallbuilding,street, forest, coast,
mountain,opencountry

(16)f, Rodrigues, F. Pereira, and B. Ribeiro (2014). “Caussian process classification and active learning with multiple annotators”. In: ICML. PMLR,
pp. 433-441



PRESENTING LABELME DATASET(1®)

» 1000 training /500 validation /1188 test images
» 59 workers: each task has up to 3 votes

» 8classes:
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(6)f, Rodrigues, F. Pereira, and B. Ribeiro (2014). “Caussian process classification and active learning with multiple annotators”. In: [CML. PMLR,
pp. 433441,
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QUALITATIVE RESULTS
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ABLATION STUDY
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DiscussIiON
GOING TO THE LARGE-SCALE PROBLEM

» Introduced the WAUM to find ambiguous images

» Better quality data can improve performance

Towards large-scale problems

» DS model and confusion matrices do not scale
» Whatis currently donein large-scale settings?
» Can we evaluate their performance?
» Toevaluate we need data and code that scale!



THE PEERANNOT LIBRARY



PEERANNOT LIBRARY

HANDLE CROWDSOURCED DATA IN CLASSIFICATION

» Python library for small and large crowdsourced datasets
pip install peerannot
» Documentation available at: https://peerannot.github.io

peerannot Search docs @ L OR

moex B onhseace

peerannot

The hanle crowdsourced Labels n classification problerms.

Getting started

APl and CLI Reference
R = yourtemina .

APl Reference L Reference


https://peerannot.github.io
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» Handle large datasets: we implemented on-the-fly queries to avoid
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PEERANNOT LIBRARY
COMPARISON WITH EXISTING LIBRARY CROWDKIT

» Handle large datasets: we implemented on-the-fly queries to avoid
storing all data in memory (json data format)

» CLI (Command Line Interface) for efficient pipelines runningjobs

» More identification metrics and aggregation strategies for
classification

» Seamlessintegration with PyTorch pipelines:
e directly train Torchvision classifiers on the data
e keep the same framework end-to-end
e support top-k and calibration metrics at evaluation time



CROWDSOURCING IN LARGE SCALE: THE CASE OF
PL@NTNET



PRESENTING PL@NTNET PIPELINE

User expertise from
label aggregation strategy

Machine learning

\

Pl@ntnet
app e
Obs.
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REALEASING A NEW DATASET

South Western European flora obs since 2017

Nworker == 823 000 users answered more than K ~ 11000 species
Neask =~ 6 700 000 observations

9000 000 votes casted

vvyyVvyvyy

Imbalance: 80% of observations are represented by 10% of total votes


https://zenodo.org/records/10782465

REALEASING A NEW DATASET Q

South Western European flora obs since 2017

Nworker == 823 000 users answered more than K ~ 11000 species

Neask =~ 6 700 000 observations

9000 000 votes casted

Imbalance: 80% of observations are represented by 10% of total votes

vvyyVvyvyy

» Extraction of 98 experts (TelaBotanica + expert knowledge)

» https://zenodo.org/records/10782465


https://zenodo.org/records/10782465

PL@NTNET ACGREGATION STRATEGY

users u
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, ‘ oo offe o S

For all users in }i“
o conf(f) = Z “Jl yr=19)
. Identified species as author & ( Is?e 4

‘ _ Weighted
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user weight

. . uel
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conf(y)

| cacm=

'® Identified species not in [ >~ conf(sk)
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. ﬂ = fRound (11 + 131 ) ) . *?# is valid if {”’"b 2

ace > 0.7




PL@NTNET ACGREGATION STRATEGY

EXAMPLES WITH K = 3
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EXAMPLES WITH K = 3
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» Majority Vote (MV)
» Workeragreement with aggregate (WAWA)
weight(w;) = Accuracy({y"};, (™ })

» TwoThird (from iNaturalist pipeline)

e Need 2 votes
e 2/3ofagreements
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INTEGRATING THE Al VOTE

Why?
» Moredata
» Could correct non-expert users
» Could invalidate bad quality observation

Main danger
» Model collapse!”: users are already guided by Al predictions

7)) Shumailov etal. (2024). “Al models collapse when trained on recursively generated data”. In: Nature 631.8022, pp. 755759,
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» Alasworker: naive integration
» Al fixed weight:

e weight fixedto1.7
e caninvalidate two new users but is not self-validating

» Alinvalidating:

e weightfixedto1.7

e canonlyinvalidate observation
» Al confident:

e weightfixedto1.7
e can participate if confidence in prediction high enough (@score)

— confident Al with 0s.re = 0.7 performs best. ..
butinvalidating Al could be preferred for safety <
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KEY POINTS

Inshort:
» Identifying ambiguous data in crowdsourced datasets
» Creation of the peerannot library to run reproducible experiments
» Release a new large scale dataset
» Evaluation and improvements of the PI@ntNet crowdsourcing setting

Perspectives:
» Need for better data collection: recommendation system
» Extend the library for multilabel classification and regression

Thankyou!
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WEIGHT FUNCTION

a =0.5
f(nj) =n* — nf +ywith ¢ 3 =02
Ny ~0.74

Weight function determination

fin;)

0 -
, /emf ) 0 5 10 15

0 50 100 150 200 250 300
Number of identified species 72;

» With 8 identified species one becomes self-validating
» Butobservations can be invalidated at any time in the future



COMPARISON WITH ENTROPY

CIFAR-10H LabelMe

Entropy
H
i

0.0 - b
—0.2 0.0

Entropy is irrelevant with few votes per task
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