
Label ambiguity in crowdsourcing
for classification and expert feedback

Tanguy Lefort
IMAG, Univ Montpellier, CNRS
INRIA, LIRMM,

Supervised by
Benjamin Charlier
Alexis Joly
and Joseph Salmon



1How to train your classifier
Deep learning image classification pipeline



1How to train your classifier
Deep learning image classification pipeline



1How to train your classifier
Deep learning image classification pipeline



1How to train your classifier
Deep learning image classification pipeline



1How to train your classifier
Deep learning image classification pipeline



1How to train your classifier
Deep learning image classification pipeline



2Ask citizens to label our data
Framework and notation

▶ Workers sort a given task into one of the K classes

▶ y(j)
i ∈ [K] := answer of worker j to task i

▶ nworker workers answer ntask tasks



2Ask citizens to label our data
Framework and notation

▶ Workers sort a given task into one of the K classes

▶ y(j)
i ∈ [K] := answer of worker j to task i

▶ nworker workers answer ntask tasks



3From the data to the classifier
The pipeline



3From the data to the classifier
The pipeline



3From the data to the classifier
The pipeline



3From the data to the classifier
The pipeline



3From the data to the classifier
The pipeline



4Main contributions

▶ Can we improve performance by leveraging better-quality data?

▶ Creation of the WAUM(1): a metric to identify ambiguous images

▶ Can we standardize crowdsourcing dataset’s tools in python for
reproducibility?

▶ Creation of peerannot library(2):
https://peerannot.github.io

▶ What can we do in a large-scale setting? Application to Pl@ntNet

▶ Creation and evaluation of a new benchmark dataset(3)

(1) T. Lefort, B. Charlier, et al. (2024a). “Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin”. In:
Transactions on Machine Learning Research.

(2) T. Lefort, B. Charlier, et al. (2024b). “Peerannot: Classification for Crowdsourced Image Datasets with Python”. In: Computo.
(3) T. Lefort, A. Affouard, et al. (2024). “Cooperative learning of Pl@ntNet’s Artificial Intelligence algorithm: how does it work and how can we improve

it?” In: submitted to Methods in Ecology and Evolution.

https://peerannot.github.io


4Main contributions

▶ Can we improve performance by leveraging better-quality data?

▶ Creation of the WAUM(1): a metric to identify ambiguous images

▶ Can we standardize crowdsourcing dataset’s tools in python for
reproducibility?

▶ Creation of peerannot library(2):
https://peerannot.github.io

▶ What can we do in a large-scale setting? Application to Pl@ntNet

▶ Creation and evaluation of a new benchmark dataset(3)

(1) T. Lefort, B. Charlier, et al. (2024a). “Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin”. In:
Transactions on Machine Learning Research.

(2) T. Lefort, B. Charlier, et al. (2024b). “Peerannot: Classification for Crowdsourced Image Datasets with Python”. In: Computo.
(3) T. Lefort, A. Affouard, et al. (2024). “Cooperative learning of Pl@ntNet’s Artificial Intelligence algorithm: how does it work and how can we improve

it?” In: submitted to Methods in Ecology and Evolution.

https://peerannot.github.io


4Main contributions

▶ Can we improve performance by leveraging better-quality data?

▶ Creation of the WAUM(1): a metric to identify ambiguous images

▶ Can we standardize crowdsourcing dataset’s tools in python for
reproducibility?

▶ Creation of peerannot library(2):
https://peerannot.github.io

▶ What can we do in a large-scale setting? Application to Pl@ntNet

▶ Creation and evaluation of a new benchmark dataset(3)

(1) T. Lefort, B. Charlier, et al. (2024a). “Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin”. In:
Transactions on Machine Learning Research.

(2) T. Lefort, B. Charlier, et al. (2024b). “Peerannot: Classification for Crowdsourced Image Datasets with Python”. In: Computo.
(3) T. Lefort, A. Affouard, et al. (2024). “Cooperative learning of Pl@ntNet’s Artificial Intelligence algorithm: how does it work and how can we improve

it?” In: submitted to Methods in Ecology and Evolution.

https://peerannot.github.io


4Main contributions

▶ Can we improve performance by leveraging better-quality data?
▶ Creation of the WAUM(1): a metric to identify ambiguous images

▶ Can we standardize crowdsourcing dataset’s tools in python for
reproducibility?

▶ Creation of peerannot library(2):
https://peerannot.github.io

▶ What can we do in a large-scale setting? Application to Pl@ntNet

▶ Creation and evaluation of a new benchmark dataset(3)

(1) T. Lefort, B. Charlier, et al. (2024a). “Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin”. In:
Transactions on Machine Learning Research.

(2) T. Lefort, B. Charlier, et al. (2024b). “Peerannot: Classification for Crowdsourced Image Datasets with Python”. In: Computo.
(3) T. Lefort, A. Affouard, et al. (2024). “Cooperative learning of Pl@ntNet’s Artificial Intelligence algorithm: how does it work and how can we improve

it?” In: submitted to Methods in Ecology and Evolution.

https://peerannot.github.io


4Main contributions

▶ Can we improve performance by leveraging better-quality data?
▶ Creation of the WAUM(1): a metric to identify ambiguous images

▶ Can we standardize crowdsourcing dataset’s tools in python for
reproducibility?
▶ Creation of peerannot library(2):

https://peerannot.github.io

▶ What can we do in a large-scale setting? Application to Pl@ntNet

▶ Creation and evaluation of a new benchmark dataset(3)

(1) T. Lefort, B. Charlier, et al. (2024a). “Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin”. In:
Transactions on Machine Learning Research.

(2) T. Lefort, B. Charlier, et al. (2024b). “Peerannot: Classification for Crowdsourced Image Datasets with Python”. In: Computo.
(3) T. Lefort, A. Affouard, et al. (2024). “Cooperative learning of Pl@ntNet’s Artificial Intelligence algorithm: how does it work and how can we improve

it?” In: submitted to Methods in Ecology and Evolution.

https://peerannot.github.io


4Main contributions

▶ Can we improve performance by leveraging better-quality data?
▶ Creation of the WAUM(1): a metric to identify ambiguous images

▶ Can we standardize crowdsourcing dataset’s tools in python for
reproducibility?
▶ Creation of peerannot library(2):

https://peerannot.github.io

▶ What can we do in a large-scale setting? Application to Pl@ntNet
▶ Creation and evaluation of a new benchmark dataset(3)

(1) T. Lefort, B. Charlier, et al. (2024a). “Identify Ambiguous Tasks Combining Crowdsourced Labels by Weighting Areas Under the Margin”. In:
Transactions on Machine Learning Research.

(2) T. Lefort, B. Charlier, et al. (2024b). “Peerannot: Classification for Crowdsourced Image Datasets with Python”. In: Computo.
(3) T. Lefort, A. Affouard, et al. (2024). “Cooperative learning of Pl@ntNet’s Artificial Intelligence algorithm: how does it work and how can we improve

it?” In: submitted to Methods in Ecology and Evolution.

https://peerannot.github.io


5

Existing aggregation strategies



6Classical aggregation strategy
(Weighted) Majority Votes

For example with balanced weights:



7Classical aggregation strategy
(Weighted) Majority Votes

For example with unbalanced weights:



8Classical aggregation strategy
(Weighted) Majority Votes

Many existing weight choices:
▶ Inter worker agreement: WAWA(4):

weight(wj) = Accuracy({y(j)
i }i, {ŷi

MV}i)

▶ Feature importance + game theory: Shapley-value weight(5)

▶ Matrix completion: MACE(6) . . .

Pros: "simple" weight can scale to large datasets and be easy to interpret
Cons: Can not capture worker skills in detail

(4)https://success.appen.com/hc/en-us/articles/202703205-Calculating-Worker-Agreement-with-Aggregate-Wawa
(5) T. Lefort, B. Charlier, et al. (July 2024c). “Weighted majority vote using Shapley values in crowdsourcing”. In: CAp 2024 - Conférence sur l’Apprentissage

Automatique. Lille, France.
(6) D. Hovy et al. (2013). “Learning whom to trust with MACE”. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pp. 1120–1130.

https://success.appen.com/hc/en-us/articles/202703205-Calculating-Worker-Agreement-with-Aggregate-Wawa


9Classical aggregation strategy
Dawid and Skene(7)

▶ Introduced in a medical context (aggregate multiple diagnosis)
▶ Represent worker j from their pairwise confusions matrix π(j) ∈ RK×K

▶ Probabilistic model on their answers:
y(j)|y⋆ ∼ Multinomial(π(j)

y⋆,•)

with π
(j)
k,ℓ = P(worker j answers ℓ with unknown truth k)

Pros:
▶ Finer modelisation
▶ Can use adversarial workers

Cons:
▶ Memory issue: nworker × K2

parameters to estimate only
the confusion matrices

(7) A. Dawid and A. Skene (1979). “Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm”. In: J. R. Stat. Soc. Ser. C. Appl. Stat.
28.1, pp. 20–28.



10Classical aggregation strategy
Dawid and Skene – Model

Probabilistic model −→ Likelihood (to maximize via the Expectation
Maximization algorithm)



11Classical deep-learning strategy
CrowdLayer(8)

▶ Idea: put the DS confusion matrix in a neural network as a new layer

(8) F. Rodrigues and F. Pereira (2018). “Deep learning from crowds”. In: AAAI. vol. 32.



12Classical deep-learning strategy
CoNAL(9)

▶ Idea: CrowdLayer + global and local confusions

(9) Z. Chu, J. Ma, and H. Wang (2021). “Learning from Crowds by Modeling Common Confusions.”. In: AAAI, pp. 5832–5840.



13

Identify ambiguous tasks in crowdsourced
datasets



14When images have underlying ambiguity



14When images have underlying ambiguity



15Ambiguity in classical supervised setting
Area Under the Margin (AUM)

Goal: identify issues in classical datasets (x1, y1), . . . , (xn, yn) ∈ X × [K]
▶ AUM(10): monitor margin during training

(10) G. Pleiss et al. (2020). “Identifying mislabeled data using the area under the margin ranking”. In: NeurIPS.



16Ambiguity in classical supervised setting
Area Under the Margin (AUM)

Goal: identify issues in classical datasets (x1, y1), . . . , (xn, yn) ∈ X × [K]
▶ AUM(11): monitor margin during training
▶ Classifier: at training epoch t ∈ [T], C(t)(xi) ∈ RK a vector of scores
▶ Scores ordered: C(xi)[1] ≥ · · · ≥ C(xi)[K]

AUM(xi, yi) =
1
T

T∑
t=1

Margin between scores:
content of Hinge loss︷ ︸︸ ︷[

C(t)(xi)yi − C(t)(xi)[2]

]
Score of assigned label Other maximum score

Average = Stability

Challenging for crowdsourcing:
• yi unknown

▶ . . . so C(t)(xi)yi does not exist

(11) G. Pleiss et al. (2020). “Identifying mislabeled data using the area under the margin ranking”. In: NeurIPS.



16Ambiguity in classical supervised setting
Area Under the Margin (AUM)

Goal: identify issues in classical datasets (x1, y1), . . . , (xn, yn) ∈ X × [K]
▶ AUM(11): monitor margin during training
▶ Classifier: at training epoch t ∈ [T], C(t)(xi) ∈ RK a vector of scores
▶ Scores ordered: C(xi)[1] ≥ · · · ≥ C(xi)[K]

AUM(xi, yi) =
1
T

T∑
t=1

Margin between scores:
content of Hinge loss︷ ︸︸ ︷[

C(t)(xi)yi − C(t)(xi)[2]

]
Score of assigned label Other maximum score

Average = Stability

Challenging for crowdsourcing:
• yi unknown

▶ . . . so C(t)(xi)yi does not exist

(11) G. Pleiss et al. (2020). “Identifying mislabeled data using the area under the margin ranking”. In: NeurIPS.



16Ambiguity in classical supervised setting
Area Under the Margin (AUM)

Goal: identify issues in classical datasets (x1, y1), . . . , (xn, yn) ∈ X × [K]
▶ AUM(11): monitor margin during training
▶ Classifier: at training epoch t ∈ [T], C(t)(xi) ∈ RK a vector of scores
▶ Scores ordered: C(xi)[1] ≥ · · · ≥ C(xi)[K]

AUM(xi, yi) =
1
T

T∑
t=1

Margin between scores:
content of Hinge loss︷ ︸︸ ︷[

C(t)(xi)yi − C(t)(xi)[2]

]
Score of assigned label Other maximum score

Average = Stability

Challenging for crowdsourcing:
• yi unknown

▶ . . . so C(t)(xi)yi does not exist

(11) G. Pleiss et al. (2020). “Identifying mislabeled data using the area under the margin ranking”. In: NeurIPS.



17Going to the crowdsourcing setting
AUMC

Naive Extension: identify issues in concatenated datasets {(xi, y(j)
i )}i,j

▶ Plugin estimate of yi using ŷMV
i

AUMC(xi, ŷi
MV) =

1
T

T∑
t=1

Margin between scores:
margin for top-1 classification︷ ︸︸ ︷[

C(t)(xi)ŷi
MV − C(t)(xi)[2]

]
Score of MV label Other maximum score

Average = Stability

Issue:
• Lose all worker-related information
• Sensitive to poorly performing workers



18Going to the crowdsourcing setting
WAUM

Weighted Areas Under the Margins: identify issues in concatenated
datasets {(xi, y(j)

i )}i,j

▶ Scale effects in the scores discarded, need normalization(12)

With:
• σ(xi) = σ(C(xi)) ∈ ∆K−1 (simplex of dim K − 1)

WAUM(xi) :=
1
S

∑
j∈A(xi)

s(j)(xi)
1
T

T∑
t=1

Margin between scores︷ ︸︸ ︷[
σ
(t)
y(j)

i
(xi) − σ

(t)
[2](xi)

]
Probability of assigned label by worker wj

Second maximum probability

Trust score of wj for xi
Average = Stability

Weighted average of AUM

(12) C. Ju, A. Bibaut, and M. van der Laan (2018). “The relative performance of ensemble methods with deep convolutional neural networks for image
classification”. In: J. Appl. Stat. 45.15, pp. 2800–2818.



19Weights in the WAUM
Leverage both tasks and labels

Our chosen worker/task score:
• Consider a score (following Servajean et al. (2017)(13)) of the form(14):

worker skill × task difficulty

s(j)(xi) =
〈

diag(π̂(j)) | σ(T)(xi)
〉
∈ [0, 1]

Worker j overall ability Difficulty of task i

(13) M. Servajean et al. (2017). “Crowdsourcing thousands of specialized labels: A Bayesian active training approach”. In: IEEE Transactions on Multimedia
19.6, pp. 1376–1391.
(14) J. Whitehill et al. (2009). “Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise”. In: NeurIPS. vol. 22.



20Computing the WAUM
The pipeline summarized

• Estimate confusion matrices π(j) ∈ RK×K , for all j ∈ [nworker]

• Train a network on all crowdsourced task/label pairs: (xi, y(j)
i )

• Compute all WAUM(xi) during training

Usage (for learning):
• Prune xi’s with WAUM(xi) below quantile qα (say α = 0.01)
• Estimate confusion matrices π̂(j) on pruned training dataset
• Aggregate labels and train a classifier on the newly pruned dataset



20Computing the WAUM
The pipeline summarized

• Estimate confusion matrices π(j) ∈ RK×K , for all j ∈ [nworker]

• Train a network on all crowdsourced task/label pairs: (xi, y(j)
i )

• Compute all WAUM(xi) during training

Usage (for learning):
• Prune xi’s with WAUM(xi) below quantile qα (say α = 0.01)
• Estimate confusion matrices π̂(j) on pruned training dataset
• Aggregate labels and train a classifier on the newly pruned dataset



20Computing the WAUM
The pipeline summarized

• Estimate confusion matrices π(j) ∈ RK×K , for all j ∈ [nworker]

• Train a network on all crowdsourced task/label pairs: (xi, y(j)
i )

• Compute all WAUM(xi) during training

Usage (for learning):
• Prune xi’s with WAUM(xi) below quantile qα (say α = 0.01)
• Estimate confusion matrices π̂(j) on pruned training dataset
• Aggregate labels and train a classifier on the newly pruned dataset



20Computing the WAUM
The pipeline summarized

• Estimate confusion matrices π(j) ∈ RK×K , for all j ∈ [nworker]

• Train a network on all crowdsourced task/label pairs: (xi, y(j)
i )

• Compute all WAUM(xi) during training

Usage (for learning):

• Prune xi’s with WAUM(xi) below quantile qα (say α = 0.01)
• Estimate confusion matrices π̂(j) on pruned training dataset
• Aggregate labels and train a classifier on the newly pruned dataset



20Computing the WAUM
The pipeline summarized

• Estimate confusion matrices π(j) ∈ RK×K , for all j ∈ [nworker]

• Train a network on all crowdsourced task/label pairs: (xi, y(j)
i )

• Compute all WAUM(xi) during training

Usage (for learning):
• Prune xi’s with WAUM(xi) below quantile qα (say α = 0.01)
• Estimate confusion matrices π̂(j) on pruned training dataset

• Aggregate labels and train a classifier on the newly pruned dataset



20Computing the WAUM
The pipeline summarized

• Estimate confusion matrices π(j) ∈ RK×K , for all j ∈ [nworker]

• Train a network on all crowdsourced task/label pairs: (xi, y(j)
i )

• Compute all WAUM(xi) during training

Usage (for learning):
• Prune xi’s with WAUM(xi) below quantile qα (say α = 0.01)
• Estimate confusion matrices π̂(j) on pruned training dataset
• Aggregate labels and train a classifier on the newly pruned dataset



21Presenting CIFAR-10H(15)dataset

Labels:cat,dog,car,plane,bird,horse,frog,deer,ship,truck

Image #7681
CIFAR-10 label: airplane

ai
rp

la
n

e
au

to
m

ob
ile

b
ir

d
ca

t
d

ee
r

d
og

fr
og

h
or

se
sh

ip
tr

u
ck

0%

10%

20%

30%

40%

50%

V
ot

es
d

is
tr

ib
u

ti
on

Image #6750
CIFAR-10 label: deer

ai
rp

la
n

e
au

to
m

ob
ile

b
ir

d
ca

t
d

ee
r

d
og

fr
og

h
or

se
sh

ip
tr

u
ck

0%

10%

20%

30%

40%

50%

V
ot

es
d

is
tr

ib
u

ti
on

Image #9246
CIFAR-10 label: cat

ai
rp

la
n

e
au

to
m

ob
ile

b
ir

d
ca

t
d

ee
r

d
og

fr
og

h
or

se
sh

ip
tr

u
ck

0%

10%

20%

30%

40%

50%

V
ot

es
d

is
tr

ib
u

ti
on

(15) J. C. Peterson et al. (2019). “Human Uncertainty Makes Classification More Robust”. In: ICCV, pp. 9617–9626.



21Presenting CIFAR-10H(15)dataset

Labels:cat,dog,car,plane,bird,horse,frog,deer,ship,truck

Image #7681
CIFAR-10 label: airplane

ai
rp

la
n

e
au

to
m

ob
ile

b
ir

d
ca

t
d

ee
r

d
og

fr
og

h
or

se
sh

ip
tr

u
ck

0%

10%

20%

30%

40%

50%

V
ot

es
d

is
tr

ib
u

ti
on

Image #6750
CIFAR-10 label: deer

ai
rp

la
n

e
au

to
m

ob
ile

b
ir

d
ca

t
d

ee
r

d
og

fr
og

h
or

se
sh

ip
tr

u
ck

0%

10%

20%

30%

40%

50%

V
ot

es
d

is
tr

ib
u

ti
on

Image #9246
CIFAR-10 label: cat

ai
rp

la
n

e
au

to
m

ob
ile

b
ir

d
ca

t
d

ee
r

d
og

fr
og

h
or

se
sh

ip
tr

u
ck

0%

10%

20%

30%

40%

50%

V
ot

es
d

is
tr

ib
u

ti
on

(15) J. C. Peterson et al. (2019). “Human Uncertainty Makes Classification More Robust”. In: ICCV, pp. 9617–9626.



22Presenting LabelMe dataset(16)

▶ 1000 training / 500 validation / 1188 test images
▶ 59 workers: each task has up to 3 votes
▶ 8 classes:

highway,insidecity,tallbuilding,street,forest,coast,
mountain,opencountry

co
as

t
fo

re
st

h
ig

h
w

ay
in

si
d

ec
it

y
m

ou
n
ta

in
op

en
co

u
n
tr

y
st

re
et

ta
ll

b
u

il
d

in
g

0%
25%
50%
75%

100%

V
ot

es

co
as

t
fo

re
st

h
ig

h
w

ay
in

si
d

ec
it

y
m

ou
n
ta

in
op

en
co

u
n
tr

y
st

re
et

ta
ll

b
u

il
d

in
g

co
as

t
fo

re
st

h
ig

h
w

ay
in

si
d

ec
it

y
m

ou
n
ta

in
op

en
co

u
n
tr

y
st

re
et

ta
ll

b
u

il
d

in
g

co
as

t
fo

re
st

h
ig

h
w

ay
in

si
d

ec
it

y
m

ou
n
ta

in
op

en
co

u
n
tr

y
st

re
et

ta
ll

b
u

il
d

in
g

(16) F. Rodrigues, F. Pereira, and B. Ribeiro (2014). “Gaussian process classification and active learning with multiple annotators”. In: ICML. PMLR,
pp. 433–441.



22Presenting LabelMe dataset(16)

▶ 1000 training / 500 validation / 1188 test images
▶ 59 workers: each task has up to 3 votes
▶ 8 classes:

highway,insidecity,tallbuilding,street,forest,coast,
mountain,opencountry

co
as

t
fo

re
st

h
ig

h
w

ay
in

si
d

ec
it

y
m

ou
n
ta

in
op

en
co

u
n
tr

y
st

re
et

ta
ll

b
u

il
d

in
g

0%
25%
50%
75%

100%

V
ot

es

co
as

t
fo

re
st

h
ig

h
w

ay
in

si
d

ec
it

y
m

ou
n
ta

in
op

en
co

u
n
tr

y
st

re
et

ta
ll

b
u

il
d

in
g

co
as

t
fo

re
st

h
ig

h
w

ay
in

si
d

ec
it

y
m

ou
n
ta

in
op

en
co

u
n
tr

y
st

re
et

ta
ll

b
u

il
d

in
g

co
as

t
fo

re
st

h
ig

h
w

ay
in

si
d

ec
it

y
m

ou
n
ta

in
op

en
co

u
n
tr

y
st

re
et

ta
ll

b
u

il
d

in
g

(16) F. Rodrigues, F. Pereira, and B. Ribeiro (2014). “Gaussian process classification and active learning with multiple annotators”. In: ICML. PMLR,
pp. 433–441.



23Qualitative results

WAUM AUMC AUM
(crowdsourcing) (crowdsourcing) (no crowdsourcing)



23Qualitative results

WAUM AUMC AUM
(crowdsourcing) (crowdsourcing) (no crowdsourcing)



23Qualitative results

WAUM AUMC AUM
(crowdsourcing) (crowdsourcing) (no crowdsourcing)



23Qualitative results

WAUM AUMC AUM
(crowdsourcing) (crowdsourcing) (no crowdsourcing)



24Ablation study

CIFAR-10H

MV NS DS GLAD WDS
Strategy

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Ac
c T

es
t

LabelMe

MV DS WDS CoNAL 
 = 0

CoNAL 
 = 10 4

Strategy

65

70

75

80

85

90

95

Ac
c T

es
t



25Discussion
Going to the large-scale problem

In short
▶ Introduced the WAUM to find ambiguous images
▶ Better quality data can improve performance

Towards large-scale problems

▶ DS model and confusion matrices do not scale
▶ What is currently done in large-scale settings?
▶ Can we evaluate their performance?

▶ To evaluate we need data and code that scale!



25Discussion
Going to the large-scale problem

In short
▶ Introduced the WAUM to find ambiguous images
▶ Better quality data can improve performance

Towards large-scale problems

▶ DS model and confusion matrices do not scale
▶ What is currently done in large-scale settings?
▶ Can we evaluate their performance?

▶ To evaluate we need data and code that scale!



25Discussion
Going to the large-scale problem

In short
▶ Introduced the WAUM to find ambiguous images
▶ Better quality data can improve performance

Towards large-scale problems

▶ DS model and confusion matrices do not scale
▶ What is currently done in large-scale settings?
▶ Can we evaluate their performance?

▶ To evaluate we need data and code that scale!



26

The peerannot library



27Peerannot library
Handle crowdsourced data in classification

▶ Python library for small and large crowdsourced datasets
pip install peerannot

▶ Documentation available at: https://peerannot.github.io

https://peerannot.github.io


28Peerannot library
Comparison with existing library CrowdKit

▶ Handle large datasets: we implemented on-the-fly queries to avoid
storing all data in memory (json data format)

▶ CLI (Command Line Interface) for efficient pipelines running jobs

▶ More identification metrics and aggregation strategies for
classification

▶ Seamless integration with PyTorch pipelines:
• directly train Torchvision classifiers on the data
• keep the same framework end-to-end
• support top-k and calibration metrics at evaluation time



28Peerannot library
Comparison with existing library CrowdKit

▶ Handle large datasets: we implemented on-the-fly queries to avoid
storing all data in memory (json data format)

▶ CLI (Command Line Interface) for efficient pipelines running jobs

▶ More identification metrics and aggregation strategies for
classification

▶ Seamless integration with PyTorch pipelines:
• directly train Torchvision classifiers on the data
• keep the same framework end-to-end
• support top-k and calibration metrics at evaluation time



28Peerannot library
Comparison with existing library CrowdKit

▶ Handle large datasets: we implemented on-the-fly queries to avoid
storing all data in memory (json data format)

▶ CLI (Command Line Interface) for efficient pipelines running jobs

▶ More identification metrics and aggregation strategies for
classification

▶ Seamless integration with PyTorch pipelines:
• directly train Torchvision classifiers on the data
• keep the same framework end-to-end
• support top-k and calibration metrics at evaluation time



28Peerannot library
Comparison with existing library CrowdKit

▶ Handle large datasets: we implemented on-the-fly queries to avoid
storing all data in memory (json data format)

▶ CLI (Command Line Interface) for efficient pipelines running jobs

▶ More identification metrics and aggregation strategies for
classification

▶ Seamless integration with PyTorch pipelines:
• directly train Torchvision classifiers on the data
• keep the same framework end-to-end
• support top-k and calibration metrics at evaluation time



29

Crowdsourcing in large scale: the case of
Pl@ntNet



30Presenting Pl@ntNet pipeline

User

Plant

Pl@ntnet

app

Obs.

Recognized

species

Training data 

Predictions

Machine learning



31Realeasing a new dataset

▶ South Western European flora obs since 2017
▶ nworker ≃ 823 000 users answered more than K ≃ 11000 species
▶ ntask ≃ 6 700 000 observations
▶ 9 000 000 votes casted
▶ Imbalance: 80% of observations are represented by 10% of total votes

▶ Extraction of 98 experts (TelaBotanica + expert knowledge)

▶ https://zenodo.org/records/10782465

https://zenodo.org/records/10782465


31Realeasing a new dataset

▶ South Western European flora obs since 2017
▶ nworker ≃ 823 000 users answered more than K ≃ 11000 species
▶ ntask ≃ 6 700 000 observations
▶ 9 000 000 votes casted
▶ Imbalance: 80% of observations are represented by 10% of total votes

▶ Extraction of 98 experts (TelaBotanica + expert knowledge)

▶ https://zenodo.org/records/10782465

https://zenodo.org/records/10782465


32Pl@ntNet aggregation strategy



33Pl@ntNet aggregation strategy
Examples with K = 3

Initial setting

Rosa indica Ficus elastica Mentha arvensis
Species

0
2
4
6
8

10
12

Co
nf

id
en

ce

conf

User
Raj
Luca
Mei
Lars

Rosa indica Ficus elastica Mentha arvensis
Species

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

acc



33Pl@ntNet aggregation strategy
Examples with K = 3

Label switch

Rosa indica Ficus elastica Mentha arvensis
Species

0
2
4
6
8

10
12

Co
nf

id
en

ce

conf

User
Raj
Luca
Mei
Lars
Demeter

Rosa indica Ficus elastica Mentha arvensis
Species

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

acc



33Pl@ntNet aggregation strategy
Examples with K = 3

Invalidate

Rosa indica Ficus elastica Mentha arvensis
Species

0
2
4
6
8

10
12

Co
nf

id
en

ce

conf

User
Raj
Luca
Mei
Lars
Demeter

Rosa indica Ficus elastica Mentha arvensis
Species

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

acc



34Compared strategies

▶ Majority Vote (MV)

▶ Worker agreement with aggregate (WAWA)
weight(wj) = Accuracy({y(j)

i }i, {ŷi
MV}i)

▶ TwoThird (from iNaturalist pipeline)
• Need 2 votes
• 2/3 of agreements



34Compared strategies

▶ Majority Vote (MV)
▶ Worker agreement with aggregate (WAWA)

weight(wj) = Accuracy({y(j)
i }i, {ŷi

MV}i)

▶ TwoThird (from iNaturalist pipeline)
• Need 2 votes
• 2/3 of agreements



34Compared strategies

▶ Majority Vote (MV)
▶ Worker agreement with aggregate (WAWA)

weight(wj) = Accuracy({y(j)
i }i, {ŷi

MV}i)

▶ TwoThird (from iNaturalist pipeline)
• Need 2 votes
• 2/3 of agreements



35Results



36Integrating the AI vote

Why?
▶ More data
▶ Could correct non-expert users
▶ Could invalidate bad quality observation

Main danger
▶ Model collapse(17): users are already guided by AI predictions

(17) I. Shumailov et al. (2024). “AI models collapse when trained on recursively generated data”. In: Nature 631.8022, pp. 755–759.



36Integrating the AI vote

Why?
▶ More data
▶ Could correct non-expert users
▶ Could invalidate bad quality observation

Main danger
▶ Model collapse(17): users are already guided by AI predictions

(17) I. Shumailov et al. (2024). “AI models collapse when trained on recursively generated data”. In: Nature 631.8022, pp. 755–759.



37Strategies to integrate the AI vote

▶ AI as worker: naive integration

▶ AI fixed weight:
• weight fixed to 1.7
• can invalidate two new users but is not self-validating

▶ AI invalidating:
• weight fixed to 1.7
• can only invalidate observation

▶ AI confident:
• weight fixed to 1.7
• can participate if confidence in prediction high enough (θscore)

=⇒ confident AI with θscore = 0.7 performs best. . .
but invalidating AI could be preferred for safety ⇐=



37Strategies to integrate the AI vote

▶ AI as worker: naive integration
▶ AI fixed weight:

• weight fixed to 1.7
• can invalidate two new users but is not self-validating

▶ AI invalidating:
• weight fixed to 1.7
• can only invalidate observation

▶ AI confident:
• weight fixed to 1.7
• can participate if confidence in prediction high enough (θscore)

=⇒ confident AI with θscore = 0.7 performs best. . .
but invalidating AI could be preferred for safety ⇐=



37Strategies to integrate the AI vote

▶ AI as worker: naive integration
▶ AI fixed weight:

• weight fixed to 1.7
• can invalidate two new users but is not self-validating

▶ AI invalidating:
• weight fixed to 1.7
• can only invalidate observation

▶ AI confident:
• weight fixed to 1.7
• can participate if confidence in prediction high enough (θscore)

=⇒ confident AI with θscore = 0.7 performs best. . .
but invalidating AI could be preferred for safety ⇐=



37Strategies to integrate the AI vote

▶ AI as worker: naive integration
▶ AI fixed weight:

• weight fixed to 1.7
• can invalidate two new users but is not self-validating

▶ AI invalidating:
• weight fixed to 1.7
• can only invalidate observation

▶ AI confident:
• weight fixed to 1.7
• can participate if confidence in prediction high enough (θscore)

=⇒ confident AI with θscore = 0.7 performs best. . .
but invalidating AI could be preferred for safety ⇐=



37Strategies to integrate the AI vote

▶ AI as worker: naive integration
▶ AI fixed weight:

• weight fixed to 1.7
• can invalidate two new users but is not self-validating

▶ AI invalidating:
• weight fixed to 1.7
• can only invalidate observation

▶ AI confident:
• weight fixed to 1.7
• can participate if confidence in prediction high enough (θscore)

=⇒ confident AI with θscore = 0.7 performs best. . .
but invalidating AI could be preferred for safety ⇐=



38

Conclusion



39Conclusion and perspectives
Key points

In short:
▶ Identifying ambiguous data in crowdsourced datasets
▶ Creation of the peerannot library to run reproducible experiments
▶ Release a new large scale dataset
▶ Evaluation and improvements of the Pl@ntNet crowdsourcing setting

Perspectives:
▶ Need for better data collection: recommendation system
▶ Extend the library for multilabel classification and regression

Thank you!



39Conclusion and perspectives
Key points

In short:
▶ Identifying ambiguous data in crowdsourced datasets
▶ Creation of the peerannot library to run reproducible experiments
▶ Release a new large scale dataset
▶ Evaluation and improvements of the Pl@ntNet crowdsourcing setting

Perspectives:
▶ Need for better data collection: recommendation system
▶ Extend the library for multilabel classification and regression

Thank you!



39Conclusion and perspectives
Key points

In short:
▶ Identifying ambiguous data in crowdsourced datasets
▶ Creation of the peerannot library to run reproducible experiments
▶ Release a new large scale dataset
▶ Evaluation and improvements of the Pl@ntNet crowdsourcing setting

Perspectives:
▶ Need for better data collection: recommendation system
▶ Extend the library for multilabel classification and regression

Thank you!



39References I

Chu, Z., J. Ma, and H. Wang (2021). “Learning from Crowds by Modeling
Common Confusions.”. In: AAAI, pp. 5832–5840.
Dawid, A. and A. Skene (1979). “Maximum Likelihood Estimation of

Observer Error-Rates Using the EM Algorithm”. In: J. R. Stat. Soc. Ser. C.
Appl. Stat. 28.1, pp. 20–28.
Hovy, D. et al. (2013). “Learning whom to trust with MACE”. In:

Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
pp. 1120–1130.
Ju, C., A. Bibaut, and M. van der Laan (2018). “The relative performance

of ensemble methods with deep convolutional neural networks for
image classification”. In: J. Appl. Stat. 45.15, pp. 2800–2818.
Lefort, T., A. Affouard, et al. (2024). “Cooperative learning of Pl@ntNet’s

Artificial Intelligence algorithm: how does it work and how can we
improve it?” In: submitted to Methods in Ecology and Evolution.



39References II

Lefort, T., B. Charlier, et al. (2024a). “Identify Ambiguous Tasks
Combining Crowdsourced Labels by Weighting Areas Under the Margin”.
In: Transactions on Machine Learning Research.
— (2024b). “Peerannot: Classification for Crowdsourced Image

Datasets with Python”. In: Computo.
— (July 2024c). “Weighted majority vote using Shapley values in

crowdsourcing”. In: CAp 2024 - Conférence sur l’Apprentissage Automatique.
Lille, France.
Peterson, J. C. et al. (2019). “Human Uncertainty Makes Classification

More Robust”. In: ICCV, pp. 9617–9626.
Pleiss, G. et al. (2020). “Identifying mislabeled data using the area

under the margin ranking”. In: NeurIPS.
Rodrigues, F. and F. Pereira (2018). “Deep learning from crowds”. In:

AAAI. Vol. 32.
Rodrigues, F., F. Pereira, and B. Ribeiro (2014). “Gaussian process

classification and active learning with multiple annotators”. In: ICML.
PMLR, pp. 433–441.



39References III

Servajean, M. et al. (2017). “Crowdsourcing thousands of specialized
labels: A Bayesian active training approach”. In: IEEE Transactions on
Multimedia 19.6, pp. 1376–1391.
Shumailov, I. et al. (2024). “AI models collapse when trained on

recursively generated data”. In: Nature 631.8022, pp. 755–759.
Whitehill, J. et al. (2009). “Whose Vote Should Count More: Optimal

Integration of Labels from Labelers of Unknown Expertise”. In: NeurIPS.
Vol. 22.



40Pl@ntNet aggregation strategy
Weight function

f (nj) = nα
j − nβ

j + γ with


α = 0.5
β = 0.2
γ ≃ 0.74

▶ With 8 identified species one becomes self-validating

▶ But observations can be invalidated at any time in the future



40Pl@ntNet aggregation strategy
Weight function

f (nj) = nα
j − nβ

j + γ with


α = 0.5
β = 0.2
γ ≃ 0.74

▶ With 8 identified species one becomes self-validating
▶ But observations can be invalidated at any time in the future



41Comparison with Entropy

CIFAR-10H

−0.2 0.0 0.2 0.4 0.6 0.8
WAUM

0.0

0.5

1.0

1.5

2.0

E
nt

ro
py

LabelMe

−0.2 −0.1 0.0 0.1 0.2 0.3
WAUM

0.0

0.5

1.0

1.5

2.0

E
nt

ro
py

▶ Entropy is irrelevant with few votes per task


	Existing aggregation strategies
	Identify ambiguous tasks in crowdsourced datasets
	The peerannot library
	Crowdsourcing in large scale: the case of Pl@ntNet
	Conclusion
	References
	Appendix

