How to handle our data?
2024-07-05
\(\Longrightarrow\) We write \(y_i^{(j)}\) the answer from worker \(w_j\) to task \(x_i\) \(\Longleftarrow\)
\[\begin{align*} H(p)&=-\sum_{k}p_k\log(p_k) \quad\text{with}\quad p = \frac{1}{|\mathcal{A}(x_i)|}\left(\sum_{j\in \mathcal{A}(x_i)} \mathbf{1}(y_i^{(j)}=k)\right)_{k\in[K]} \end{align*}\]
\[ \mathrm{WAUM}(x_i) = \frac{1}{\displaystyle\sum_{j'\in\mathcal{A}(x_i)} s^{(j')}(x_i)} \sum_{j\in\mathcal{A}(x_i)} s^{(j)}(x_i) \color{blue}{\left\{\frac{1}{T} \sum_{t=1}^T \sigma(\mathcal{C}(x_i))_{y_i^{(j)}} - \sigma(\mathcal{C}(x_i))_{[2]}\right\}} \]
plane, car, bird, cat, deer, dog, frog, horse, ship, truck
highway, insidecity, tallbuilding, street, forest, coast, mountain, open country.
\[ \hat y_i = \underset{k\in[K]}{\mathrm{argmax}}\left(\sum_{j\in\mathcal{A}(x_i)} s^{(j)}\mathbf{1}(y_i^{(j)}=k)\right)_k \]
\[ s^{(j)} = \sum_i \left|\sum_{S\subset [n_\texttt{worker}]} \frac{|S|! (n_\texttt{worker}-|S|-1)!}{n_\texttt{worker}!}[\nu_{x_i, f}(S\cup \{j\}) - \nu_{x_i, f}(S)]\right| \]
At each step \(t\): \[ s^{(j)}_t \gets s^{(j)}_{t-1} - \eta \left(s^{(j)}_{t-1} - \mathrm{Accuracy}(\{y_i^{(j)}\}_i), \hat y_i^{t-1}\right) \]
\[ y^{(j)}|y^\star\sim\mathcal{M}\text{ultinomial}(\pi^{(j)}_{y^\star,\cdot}) \]
where \(\pi^{(j)}_{k,\ell}=\mathbb{P}(\text{worker } j \text{ answers } \ell \text{ with truth } k)\)
\[ f(n_j)=n_j^\alpha - n_j^\beta + \gamma, \text{ with }\begin{cases} \alpha=0.5 \\ \beta=0.2 \\ \gamma=\log(2.1)\simeq 0.74 \end{cases} \]
High imbalance: \(80\%\) of images are represented by \(10\%\) of votes